Prepare to merge KAZE and AKAZE nldiffusion_functions source files (work in progress).

This commit is contained in:
Ievgen Khvedchenia 2014-05-01 18:27:24 +03:00
parent 30f73623ce
commit 2df7242646
6 changed files with 68 additions and 140 deletions

View File

@ -7,7 +7,7 @@
*/
#include "AKAZEFeatures.h"
#include "fed.h"
#include "../kaze/fed.h"
#include "nldiffusion_functions.h"
using namespace std;

View File

@ -1,26 +0,0 @@
#ifndef FED_H
#define FED_H
//******************************************************************************
//******************************************************************************
// Includes
#include <iostream>
#include <vector>
//*************************************************************************************
//*************************************************************************************
// Declaration of functions
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max,
const bool& reordering, std::vector<float>& tau);
int fed_tau_by_cycle_time(const float& t, const float& tau_max,
const bool& reordering, std::vector<float> &tau) ;
int fed_tau_internal(const int& n, const float& scale, const float& tau_max,
const bool& reordering, std::vector<float> &tau);
bool fed_is_prime_internal(const int& number);
//*************************************************************************************
//*************************************************************************************
#endif // FED_H

View File

@ -235,12 +235,63 @@ namespace cv {
* @param scale Scale factor for the derivative size
*/
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
Mat kx, ky;
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
sepFilter2D(src, dst, CV_32F, kx, ky);
}
/* ************************************************************************* */
/**
* @brief Compute Scharr derivative kernels for sizes different than 3
* @param kx_ The derivative kernel in x-direction
* @param ky_ The derivative kernel in y-direction
* @param dx The derivative order in x-direction
* @param dy The derivative order in y-direction
* @param scale The kernel size
*/
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale) {
const int ksize = 3 + 2 * (scale - 1);
// The usual Scharr kernel
if (scale == 1) {
getDerivKernels(kx_, ky_, dx, dy, 0, true, CV_32F);
return;
}
kx_.create(ksize, 1, CV_32F, -1, true);
ky_.create(ksize, 1, CV_32F, -1, true);
Mat kx = kx_.getMat();
Mat ky = ky_.getMat();
float w = 10.0f / 3.0f;
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
for (int k = 0; k < 2; k++) {
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
float kerI[1000];
for (int t = 0; t < ksize; t++) {
kerI[t] = 0;
}
if (order == 0) {
kerI[0] = norm;
kerI[ksize / 2] = w*norm;
kerI[ksize - 1] = norm;
}
else if (order == 1) {
kerI[0] = -1;
kerI[ksize / 2] = 0;
kerI[ksize - 1] = 1;
}
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
temp.copyTo(*kernel);
}
}
/* ************************************************************************* */
/**
* @brief This function performs a scalar non-linear diffusion step
@ -300,27 +351,6 @@ namespace cv {
Ld = Ld + Lstep;
}
/* ************************************************************************* */
/**
* @brief This function downsamples the input image with the kernel [1/4,1/2,1/4]
* @param img Input image to be downsampled
* @param dst Output image with half of the resolution of the input image
*/
void downsample_image(const cv::Mat& src, cv::Mat& dst) {
int i1 = 0, j1 = 0, i2 = 0, j2 = 0;
for (i1 = 1; i1 < src.rows; i1 += 2) {
j2 = 0;
for (j1 = 1; j1 < src.cols; j1 += 2) {
*(dst.ptr<float>(i2)+j2) = 0.5f*(*(src.ptr<float>(i1)+j1)) + 0.25f*(*(src.ptr<float>(i1)+j1 - 1) + *(src.ptr<float>(i1)+j1 + 1));
j2++;
}
i2++;
}
}
/* ************************************************************************* */
/**
* @brief This function downsamples the input image using OpenCV resize
@ -335,57 +365,7 @@ namespace cv {
resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA);
}
/* ************************************************************************* */
/**
* @brief Compute Scharr derivative kernels for sizes different than 3
* @param kx_ The derivative kernel in x-direction
* @param ky_ The derivative kernel in y-direction
* @param dx The derivative order in x-direction
* @param dy The derivative order in y-direction
* @param scale The kernel size
*/
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale) {
const int ksize = 3 + 2 * (scale - 1);
// The usual Scharr kernel
if (scale == 1) {
getDerivKernels(kx_, ky_, dx, dy, 0, true, CV_32F);
return;
}
kx_.create(ksize, 1, CV_32F, -1, true);
ky_.create(ksize, 1, CV_32F, -1, true);
Mat kx = kx_.getMat();
Mat ky = ky_.getMat();
float w = 10.0f / 3.0f;
float norm = 1.0f / (2.0f*scale*(w + 2.0f));
for (int k = 0; k < 2; k++) {
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
float kerI[1000];
for (int t = 0; t < ksize; t++) {
kerI[t] = 0;
}
if (order == 0) {
kerI[0] = norm;
kerI[ksize / 2] = w*norm;
kerI[ksize - 1] = norm;
}
else if (order == 1) {
kerI[0] = -1;
kerI[ksize / 2] = 0;
kerI[ksize - 1] = 1;
}
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]);
temp.copyTo(*kernel);
}
}
}
}
}

View File

@ -28,7 +28,6 @@ namespace cv {
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y);
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int, int scale);
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize);
void downsample_image(const cv::Mat& src, cv::Mat& dst);
void halfsample_image(const cv::Mat& src, cv::Mat& dst);
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, int dx, int dy, int scale);
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img);

View File

@ -5,11 +5,6 @@
//******************************************************************************
// Includes
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <cstdlib>
#include <math.h>
#include <vector>
//*************************************************************************************

View File

@ -28,14 +28,14 @@
// Namespaces
using namespace std;
using namespace cv;
using namespace cv::details::kaze;
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
namespace cv {
namespace details {
namespace kaze {
/* ************************************************************************* */
/**
* @brief This function smoothes an image with a Gaussian kernel
* @param src Input image
@ -44,8 +44,7 @@ namespace cv {
* @param ksize_y Kernel size in Y-direction (vertical)
* @param sigma Kernel standard deviation
*/
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst,
int ksize_x, int ksize_y, float sigma) {
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) {
int ksize_x_ = 0, ksize_y_ = 0;
@ -68,9 +67,7 @@ namespace cv {
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, cv::BORDER_REPLICATE);
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function computes the Perona and Malik conductivity coefficient g1
* g1 = exp(-|dL|^2/k^2)
@ -83,9 +80,7 @@ namespace cv {
cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly)) / (k*k), dst);
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function computes the Perona and Malik conductivity coefficient g2
* g2 = 1 / (1 + dL^2 / k^2)
@ -98,9 +93,7 @@ namespace cv {
dst = 1. / (1. + (Lx.mul(Lx) + Ly.mul(Ly)) / (k*k));
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function computes Weickert conductivity coefficient g3
* @param Lx First order image derivative in X-direction (horizontal)
@ -118,9 +111,7 @@ namespace cv {
dst = 1.0f - dst;
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function computes a good empirical value for the k contrast factor
* given an input image, the percentile (0-1), the gradient scale and the number of
@ -208,9 +199,7 @@ namespace cv {
return kperc;
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function computes Scharr image derivatives
* @param src Input image
@ -219,16 +208,13 @@ namespace cv {
* @param yorder Derivative order in Y-direction (vertical)
* @param scale Scale factor or derivative size
*/
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst,
int xorder, int yorder, int scale) {
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) {
Mat kx, ky;
compute_derivative_kernels(kx, ky, xorder, yorder, scale);
sepFilter2D(src, dst, CV_32F, kx, ky);
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief Compute derivative kernels for sizes different than 3
* @param _kx Horizontal kernel values
@ -237,8 +223,7 @@ namespace cv {
* @param dy Derivative order in Y-direction (vertical)
* @param scale_ Scale factor or derivative size
*/
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky,
int dx, int dy, int scale) {
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) {
int ksize = 3 + 2 * (scale - 1);
@ -273,9 +258,7 @@ namespace cv {
}
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function performs a scalar non-linear diffusion step
* @param Ld2 Output image in the evolution
@ -336,9 +319,7 @@ namespace cv {
Ld = Ld + Lstep;
}
//*************************************************************************************
//*************************************************************************************
/* ************************************************************************* */
/**
* @brief This function checks if a given pixel is a maximum in a local neighbourhood
* @param img Input image where we will perform the maximum search
@ -349,8 +330,7 @@ namespace cv {
* @param same_img Flag to indicate if the image value at (x,y) is in the input image
* @return 1->is maximum, 0->otherwise
*/
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value,
int row, int col, bool same_img) {
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img) {
bool response = true;