Added Kalman Filter of OpenCL version.
This commit is contained in:
parent
ff1eb0d582
commit
2d5a1dacd0
modules/ocl
@ -587,6 +587,7 @@ namespace cv
|
||||
|
||||
CV_EXPORTS void cvtColor(const oclMat &src, oclMat &dst, int code , int dcn = 0);
|
||||
|
||||
CV_EXPORTS void setIdentity(oclMat& src, double val);
|
||||
//////////////////////////////// Filter Engine ////////////////////////////////
|
||||
|
||||
/*!
|
||||
@ -1847,6 +1848,37 @@ namespace cv
|
||||
|
||||
oclMat bgmodelUsedModes_; //keep track of number of modes per pixel
|
||||
};
|
||||
|
||||
/*!***************Kalman Filter*************!*/
|
||||
class CV_EXPORTS KalmanFilter
|
||||
{
|
||||
public:
|
||||
KalmanFilter();
|
||||
//! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
|
||||
KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
|
||||
//! re-initializes Kalman filter. The previous content is destroyed.
|
||||
void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
|
||||
|
||||
const oclMat& predict(const oclMat& control=oclMat());
|
||||
const oclMat& correct(const oclMat& measurement);
|
||||
|
||||
oclMat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
oclMat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
oclMat transitionMatrix; //!< state transition matrix (A)
|
||||
oclMat controlMatrix; //!< control matrix (B) (not used if there is no control)
|
||||
oclMat measurementMatrix; //!< measurement matrix (H)
|
||||
oclMat processNoiseCov; //!< process noise covariance matrix (Q)
|
||||
oclMat measurementNoiseCov;//!< measurement noise covariance matrix (R)
|
||||
oclMat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
|
||||
oclMat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
||||
oclMat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
||||
private:
|
||||
oclMat temp1;
|
||||
oclMat temp2;
|
||||
oclMat temp3;
|
||||
oclMat temp4;
|
||||
oclMat temp5;
|
||||
};
|
||||
}
|
||||
}
|
||||
#if defined _MSC_VER && _MSC_VER >= 1200
|
||||
|
@ -98,6 +98,7 @@ namespace cv
|
||||
extern const char *arithm_phase;
|
||||
extern const char *arithm_pow;
|
||||
extern const char *arithm_magnitudeSqr;
|
||||
extern const char *arithm_setidentity;
|
||||
//extern const char * jhp_transpose_kernel;
|
||||
int64 kernelrealtotal = 0;
|
||||
int64 kernelalltotal = 0;
|
||||
@ -2342,3 +2343,62 @@ void cv::ocl::pow(const oclMat &x, double p, oclMat &y)
|
||||
|
||||
arithmetic_pow_run(x, p, y, kernelName, &arithm_pow);
|
||||
}
|
||||
void cv::ocl::setIdentity(oclMat& src, double scalar)
|
||||
{
|
||||
CV_Assert(src.empty() == false && src.rows == src.cols);
|
||||
CV_Assert(src.type() == CV_32SC1 || src.type() == CV_32FC1);
|
||||
int src_step = src.step/src.elemSize();
|
||||
Context *clCxt = Context::getContext();
|
||||
size_t local_threads[] = {16, 16, 1};
|
||||
size_t global_threads[] = {src.cols, src.rows, 1};
|
||||
|
||||
string kernelName = "setIdentityKernel";
|
||||
if(src.type() == CV_32FC1)
|
||||
kernelName += "_F1";
|
||||
else if(src.type() == CV_32SC1)
|
||||
kernelName += "_I1";
|
||||
else
|
||||
{
|
||||
kernelName += "_D1";
|
||||
if(!(clCxt->supportsFeature(Context::CL_DOUBLE)))
|
||||
{
|
||||
oclMat temp;
|
||||
src.convertTo(temp, CV_32FC1);
|
||||
temp.copyTo(src);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step ));
|
||||
|
||||
int scalar_i = 0;
|
||||
float scalar_f = 0.0f;
|
||||
if(clCxt->supportsFeature(Context::CL_DOUBLE))
|
||||
{
|
||||
if(src.type() == CV_32SC1)
|
||||
{
|
||||
scalar_i = (int)scalar;
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&scalar_i));
|
||||
}else
|
||||
args.push_back(make_pair(sizeof(cl_double), (void*)&scalar));
|
||||
}
|
||||
else
|
||||
{
|
||||
if(src.type() == CV_32SC1)
|
||||
{
|
||||
scalar_i = (int)scalar;
|
||||
args.push_back(make_pair(sizeof(cl_int), (void*)&scalar_i));
|
||||
}else
|
||||
{
|
||||
scalar_f = (float)scalar;
|
||||
args.push_back(make_pair(sizeof(cl_float), (void*)&scalar_f));
|
||||
}
|
||||
}
|
||||
|
||||
openCLExecuteKernel(clCxt, &arithm_setidentity, kernelName, global_threads, local_threads, args, -1, -1);
|
||||
}
|
||||
|
135
modules/ocl/src/kalman.cpp
Normal file
135
modules/ocl/src/kalman.cpp
Normal file
@ -0,0 +1,135 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
KalmanFilter::KalmanFilter()
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
|
||||
{
|
||||
init(dynamParams, measureParams, controlParams, type);
|
||||
}
|
||||
|
||||
void KalmanFilter::init(int DP, int MP, int CP, int type)
|
||||
{
|
||||
CV_Assert( DP > 0 && MP > 0 );
|
||||
CV_Assert( type == CV_32F || type == CV_64F );
|
||||
CP = cv::max(CP, 0);
|
||||
|
||||
statePre.create(DP, 1, type);
|
||||
statePre.setTo(Scalar::all(0));
|
||||
|
||||
statePost.create(DP, 1, type);
|
||||
statePost.setTo(Scalar::all(0));
|
||||
|
||||
transitionMatrix.create(DP, DP, type);
|
||||
setIdentity(transitionMatrix, 1);
|
||||
|
||||
processNoiseCov.create(DP, DP, type);
|
||||
setIdentity(processNoiseCov, 1);
|
||||
|
||||
measurementNoiseCov.create(MP, MP, type);
|
||||
setIdentity(measurementNoiseCov, 1);
|
||||
|
||||
measurementMatrix.create(MP, DP, type);
|
||||
measurementMatrix.setTo(Scalar::all(0));
|
||||
|
||||
errorCovPre.create(DP, DP, type);
|
||||
errorCovPre.setTo(Scalar::all(0));
|
||||
|
||||
errorCovPost.create(DP, DP, type);
|
||||
errorCovPost.setTo(Scalar::all(0));
|
||||
|
||||
gain.create(DP, MP, type);
|
||||
gain.setTo(Scalar::all(0));
|
||||
|
||||
if( CP > 0 )
|
||||
{
|
||||
controlMatrix.create(DP, CP, type);
|
||||
controlMatrix.setTo(Scalar::all(0));
|
||||
}
|
||||
else
|
||||
controlMatrix.release();
|
||||
|
||||
temp1.create(DP, DP, type);
|
||||
temp2.create(MP, DP, type);
|
||||
temp3.create(MP, MP, type);
|
||||
temp4.create(MP, DP, type);
|
||||
temp5.create(MP, 1, type);
|
||||
}
|
||||
|
||||
CV_EXPORTS const oclMat& KalmanFilter::predict(const oclMat& control)
|
||||
{
|
||||
gemm(transitionMatrix, statePost, 1, oclMat(), 0, statePre);
|
||||
oclMat temp;
|
||||
|
||||
if(control.data)
|
||||
gemm(controlMatrix, control, 1, statePre, 1, statePre);
|
||||
gemm(transitionMatrix, errorCovPost, 1, oclMat(), 0, temp1);
|
||||
gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);
|
||||
statePre.copyTo(statePost);
|
||||
return statePre;
|
||||
}
|
||||
|
||||
CV_EXPORTS const oclMat& KalmanFilter::correct(const oclMat& measurement)
|
||||
{
|
||||
CV_Assert(measurement.empty() == false);
|
||||
gemm(measurementMatrix, errorCovPre, 1, oclMat(), 0, temp2);
|
||||
gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);
|
||||
Mat temp;
|
||||
solve(Mat(temp3), Mat(temp2), temp, DECOMP_SVD);
|
||||
temp4.upload(temp);
|
||||
gain = temp4.t();
|
||||
gemm(measurementMatrix, statePre, -1, measurement, 1, temp5);
|
||||
gemm(gain, temp5, 1, statePre, 1, statePost);
|
||||
gemm(gain, temp2, -1, errorCovPre, 1, errorCovPost);
|
||||
return statePost;
|
||||
}
|
100
modules/ocl/src/opencl/arithm_setidentity.cl
Normal file
100
modules/ocl/src/opencl/arithm_setidentity.cl
Normal file
@ -0,0 +1,100 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#if defined (DOUBLE_SUPPORT)
|
||||
#ifdef cl_khr_fp64
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#elif defined (cl_amd_fp64)
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#if defined (DOUBLE_SUPPORT)
|
||||
#define DATA_TYPE double
|
||||
#else
|
||||
#define DATA_TYPE float
|
||||
#endif
|
||||
|
||||
__kernel void setIdentityKernel_F1(__global float* src, int src_row, int src_col, int src_step, DATA_TYPE scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < src_col && y < src_row)
|
||||
{
|
||||
if(x == y)
|
||||
src[y * src_step + x] = scalar;
|
||||
else
|
||||
src[y * src_step + x] = 0 * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void setIdentityKernel_D1(__global DATA_TYPE* src, int src_row, int src_col, int src_step, DATA_TYPE scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < src_col && y < src_row)
|
||||
{
|
||||
if(x == y)
|
||||
src[y * src_step + x] = scalar;
|
||||
else
|
||||
src[y * src_step + x] = 0 * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void setIdentityKernel_I1(__global int* src, int src_row, int src_col, int src_step, int scalar)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < src_col && y < src_row)
|
||||
{
|
||||
if(x == y)
|
||||
src[y * src_step + x] = scalar;
|
||||
else
|
||||
src[y * src_step + x] = 0 * scalar;
|
||||
}
|
||||
}
|
147
modules/ocl/test/test_kalman.cpp
Normal file
147
modules/ocl/test/test_kalman.cpp
Normal file
@ -0,0 +1,147 @@
|
||||
///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#ifdef HAVE_OPENCL
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
PARAM_TEST_CASE(Kalman, int, int)
|
||||
{
|
||||
int size_;
|
||||
int iteration;
|
||||
virtual void SetUp()
|
||||
{
|
||||
size_ = GET_PARAM(0);
|
||||
iteration = GET_PARAM(1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Kalman, Accuracy)
|
||||
{
|
||||
const int Dim = size_;
|
||||
const int Steps = iteration;
|
||||
const double max_init = 1;
|
||||
const double max_noise = 0.1;
|
||||
|
||||
cv::RNG &rng = TS::ptr()->get_rng();
|
||||
|
||||
Mat sample_mat(Dim, 1, CV_32F), temp_mat;
|
||||
oclMat Sample(Dim, 1, CV_32F);
|
||||
oclMat Temp(Dim, 1, CV_32F);
|
||||
Mat Temp_cpu(Dim, 1, CV_32F);
|
||||
|
||||
Size size(Sample.cols, Sample.rows);
|
||||
|
||||
sample_mat = randomMat(rng, size, Sample.type(), -max_init, max_init, false);
|
||||
Sample.upload(sample_mat);
|
||||
|
||||
//ocl start
|
||||
cv::ocl::KalmanFilter kalman_filter_ocl;
|
||||
kalman_filter_ocl.init(Dim, Dim);
|
||||
|
||||
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPre, 1);
|
||||
cv::ocl::setIdentity(kalman_filter_ocl.measurementMatrix, 1);
|
||||
cv::ocl::setIdentity(kalman_filter_ocl.errorCovPost, 1);
|
||||
|
||||
kalman_filter_ocl.measurementNoiseCov.setTo(Scalar::all(0));
|
||||
kalman_filter_ocl.statePre.setTo(Scalar::all(0));
|
||||
kalman_filter_ocl.statePost.setTo(Scalar::all(0));
|
||||
|
||||
kalman_filter_ocl.correct(Sample);
|
||||
//ocl end
|
||||
|
||||
//cpu start
|
||||
cv::KalmanFilter kalman_filter_cpu;
|
||||
|
||||
kalman_filter_cpu.init(Dim, Dim);
|
||||
|
||||
cv::setIdentity(kalman_filter_cpu.errorCovPre, 1);
|
||||
cv::setIdentity(kalman_filter_cpu.measurementMatrix, 1);
|
||||
cv::setIdentity(kalman_filter_cpu.errorCovPost, 1);
|
||||
|
||||
kalman_filter_cpu.measurementNoiseCov.setTo(Scalar::all(0));
|
||||
kalman_filter_cpu.statePre.setTo(Scalar::all(0));
|
||||
kalman_filter_cpu.statePost.setTo(Scalar::all(0));
|
||||
|
||||
kalman_filter_cpu.correct(sample_mat);
|
||||
//cpu end
|
||||
//test begin
|
||||
for(int i = 0; i<Steps; i++)
|
||||
{
|
||||
kalman_filter_ocl.predict();
|
||||
kalman_filter_cpu.predict();
|
||||
|
||||
cv::gemm(kalman_filter_cpu.transitionMatrix, sample_mat, 1, cv::Mat(), 0, Temp_cpu);
|
||||
|
||||
Size size1(Temp.cols, Temp.rows);
|
||||
Mat temp = randomMat(rng, size1, Temp.type(), 0, 0xffff, false);
|
||||
|
||||
|
||||
cv::multiply(2, temp, temp);
|
||||
|
||||
cv::subtract(temp, 1, temp);
|
||||
|
||||
cv::multiply(max_noise, temp, temp);
|
||||
|
||||
cv::add(temp, Temp_cpu, Temp_cpu);
|
||||
|
||||
Temp.upload(Temp_cpu);
|
||||
Temp.copyTo(Sample);
|
||||
Temp_cpu.copyTo(sample_mat);
|
||||
|
||||
kalman_filter_ocl.correct(Temp);
|
||||
kalman_filter_cpu.correct(Temp_cpu);
|
||||
}
|
||||
//test end
|
||||
EXPECT_MAT_NEAR(kalman_filter_cpu.statePost, kalman_filter_ocl.statePost, 0);
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(OCL_Video, Kalman, Combine(Values(3, 7), Values(30)));
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
Loading…
x
Reference in New Issue
Block a user