All modules (except ocl and gpu) compiles and pass tests
This commit is contained in:
@@ -48,7 +48,7 @@ Class for loading the data from a ``.csv`` file.
|
||||
void set_miss_ch( char ch );
|
||||
char get_miss_ch() const;
|
||||
|
||||
const std::map<std::string, int>& get_class_labels_map() const;
|
||||
const std::map<cv::String, int>& get_class_labels_map() const;
|
||||
|
||||
protected:
|
||||
...
|
||||
@@ -245,7 +245,7 @@ CvMLData::get_class_labels_map
|
||||
-------------------------------
|
||||
Returns a map that converts strings to labels.
|
||||
|
||||
.. ocv:function:: const std::map<std::string, int>& CvMLData::get_class_labels_map() const
|
||||
.. ocv:function:: const std::map<cv::String, int>& CvMLData::get_class_labels_map() const
|
||||
|
||||
The method returns a map that converts string class labels to the numerical class labels. It can be used to get an original class label as in a file.
|
||||
|
||||
|
@@ -1043,7 +1043,7 @@ public:
|
||||
CvForestTree* get_tree(int i) const;
|
||||
|
||||
protected:
|
||||
virtual std::string getName() const;
|
||||
virtual cv::String getName() const;
|
||||
|
||||
virtual bool grow_forest( const CvTermCriteria term_crit );
|
||||
|
||||
@@ -1115,7 +1115,7 @@ public:
|
||||
CvRTParams params=CvRTParams());
|
||||
virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
|
||||
protected:
|
||||
virtual std::string getName() const;
|
||||
virtual cv::String getName() const;
|
||||
virtual bool grow_forest( const CvTermCriteria term_crit );
|
||||
};
|
||||
|
||||
@@ -2072,7 +2072,7 @@ public:
|
||||
void set_miss_ch( char ch );
|
||||
char get_miss_ch() const;
|
||||
|
||||
const std::map<std::string, int>& get_class_labels_map() const;
|
||||
const std::map<cv::String, int>& get_class_labels_map() const;
|
||||
|
||||
protected:
|
||||
virtual void clear();
|
||||
@@ -2101,7 +2101,7 @@ protected:
|
||||
bool mix;
|
||||
|
||||
int total_class_count;
|
||||
std::map<std::string, int> class_map;
|
||||
std::map<cv::String, int> class_map;
|
||||
|
||||
CvMat* train_sample_idx;
|
||||
CvMat* test_sample_idx;
|
||||
|
@@ -285,7 +285,7 @@ const CvMat* CvMLData::get_missing() const
|
||||
return missing;
|
||||
}
|
||||
|
||||
const std::map<std::string, int>& CvMLData::get_class_labels_map() const
|
||||
const std::map<cv::String, int>& CvMLData::get_class_labels_map() const
|
||||
{
|
||||
return class_map;
|
||||
}
|
||||
|
@@ -1537,7 +1537,7 @@ CvERTrees::~CvERTrees()
|
||||
{
|
||||
}
|
||||
|
||||
std::string CvERTrees::getName() const
|
||||
cv::String CvERTrees::getName() const
|
||||
{
|
||||
return CV_TYPE_NAME_ML_ERTREES;
|
||||
}
|
||||
|
@@ -1117,7 +1117,7 @@ void CvGBTrees::write( CvFileStorage* fs, const char* name ) const
|
||||
|
||||
CvSeqReader reader;
|
||||
int i;
|
||||
std::string s;
|
||||
cv::String s;
|
||||
|
||||
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_GBT );
|
||||
|
||||
@@ -1167,7 +1167,7 @@ void CvGBTrees::read( CvFileStorage* fs, CvFileNode* node )
|
||||
CvFileNode* trees_fnode;
|
||||
CvMemStorage* storage;
|
||||
int i, ntrees;
|
||||
std::string s;
|
||||
cv::String s;
|
||||
|
||||
clear();
|
||||
read_params( fs, node );
|
||||
|
@@ -45,6 +45,7 @@
|
||||
#include "cvconfig.h"
|
||||
#endif
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/ml.hpp"
|
||||
#include "opencv2/core/core_c.h"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
|
@@ -246,7 +246,7 @@ CvRTrees::~CvRTrees()
|
||||
clear();
|
||||
}
|
||||
|
||||
std::string CvRTrees::getName() const
|
||||
cv::String CvRTrees::getName() const
|
||||
{
|
||||
return CV_TYPE_NAME_ML_RTREES;
|
||||
}
|
||||
@@ -730,7 +730,7 @@ void CvRTrees::write( CvFileStorage* fs, const char* name ) const
|
||||
if( ntrees < 1 || !trees || nsamples < 1 )
|
||||
CV_Error( CV_StsBadArg, "Invalid CvRTrees object" );
|
||||
|
||||
std::string modelNodeName = this->getName();
|
||||
cv::String modelNodeName = this->getName();
|
||||
cvStartWriteStruct( fs, name, CV_NODE_MAP, modelNodeName.c_str() );
|
||||
|
||||
cvWriteInt( fs, "nclasses", nclasses );
|
||||
|
@@ -1924,7 +1924,7 @@ bool CvSVM::train_auto( const CvMat* _train_data, const CvMat* _responses,
|
||||
qsort(ratios, k_fold, sizeof(ratios[0]), icvCmpIndexedratio);
|
||||
double old_dist = 0.0;
|
||||
for (int k=0; k<k_fold; ++k)
|
||||
old_dist += abs(ratios[k].val-class_ratio);
|
||||
old_dist += cv::abs(ratios[k].val-class_ratio);
|
||||
double new_dist = 1.0;
|
||||
// iterate to make the folds more balanced
|
||||
while (new_dist > 0.0)
|
||||
@@ -1941,7 +1941,7 @@ bool CvSVM::train_auto( const CvMat* _train_data, const CvMat* _responses,
|
||||
qsort(ratios, k_fold, sizeof(ratios[0]), icvCmpIndexedratio);
|
||||
new_dist = 0.0;
|
||||
for (int k=0; k<k_fold; ++k)
|
||||
new_dist += abs(ratios[k].val-class_ratio);
|
||||
new_dist += cv::abs(ratios[k].val-class_ratio);
|
||||
if (new_dist < old_dist)
|
||||
{
|
||||
// swapping really improves, so swap the samples
|
||||
|
@@ -179,7 +179,7 @@ float knearest_calc_error( CvKNearest* knearest, CvMLData* _data, int k, int typ
|
||||
}
|
||||
|
||||
// 3. svm
|
||||
int str_to_svm_type(string& str)
|
||||
int str_to_svm_type(String& str)
|
||||
{
|
||||
if( !str.compare("C_SVC") )
|
||||
return CvSVM::C_SVC;
|
||||
@@ -194,7 +194,7 @@ int str_to_svm_type(string& str)
|
||||
CV_Error( CV_StsBadArg, "incorrect svm type string" );
|
||||
return -1;
|
||||
}
|
||||
int str_to_svm_kernel_type( string& str )
|
||||
int str_to_svm_kernel_type( String& str )
|
||||
{
|
||||
if( !str.compare("LINEAR") )
|
||||
return CvSVM::LINEAR;
|
||||
@@ -297,7 +297,7 @@ float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector<float> *resp
|
||||
|
||||
// 4. em
|
||||
// 5. ann
|
||||
int str_to_ann_train_method( string& str )
|
||||
int str_to_ann_train_method( String& str )
|
||||
{
|
||||
if( !str.compare("BACKPROP") )
|
||||
return CvANN_MLP_TrainParams::BACKPROP;
|
||||
@@ -412,7 +412,7 @@ float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map<int, int>& cls_map, i
|
||||
|
||||
// 6. dtree
|
||||
// 7. boost
|
||||
int str_to_boost_type( string& str )
|
||||
int str_to_boost_type( String& str )
|
||||
{
|
||||
if ( !str.compare("DISCRETE") )
|
||||
return CvBoost::DISCRETE;
|
||||
@@ -546,7 +546,7 @@ void CV_MLBaseTest::run( int )
|
||||
int CV_MLBaseTest::prepare_test_case( int test_case_idx )
|
||||
{
|
||||
int trainSampleCount, respIdx;
|
||||
string varTypes;
|
||||
String varTypes;
|
||||
clear();
|
||||
|
||||
string dataPath = ts->get_data_path();
|
||||
@@ -605,7 +605,7 @@ int CV_MLBaseTest::train( int testCaseIdx )
|
||||
}
|
||||
else if( !modelName.compare(CV_SVM) )
|
||||
{
|
||||
string svm_type_str, kernel_type_str;
|
||||
String svm_type_str, kernel_type_str;
|
||||
modelParamsNode["svm_type"] >> svm_type_str;
|
||||
modelParamsNode["kernel_type"] >> kernel_type_str;
|
||||
CvSVMParams params;
|
||||
@@ -625,7 +625,7 @@ int CV_MLBaseTest::train( int testCaseIdx )
|
||||
}
|
||||
else if( !modelName.compare(CV_ANN) )
|
||||
{
|
||||
string train_method_str;
|
||||
String train_method_str;
|
||||
double param1, param2;
|
||||
modelParamsNode["train_method"] >> train_method_str;
|
||||
modelParamsNode["param1"] >> param1;
|
||||
@@ -659,7 +659,7 @@ int CV_MLBaseTest::train( int testCaseIdx )
|
||||
int BOOST_TYPE, WEAK_COUNT, MAX_DEPTH;
|
||||
float WEIGHT_TRIM_RATE;
|
||||
bool USE_SURROGATE;
|
||||
string typeStr;
|
||||
String typeStr;
|
||||
modelParamsNode["type"] >> typeStr;
|
||||
BOOST_TYPE = str_to_boost_type( typeStr );
|
||||
modelParamsNode["weak_count"] >> WEAK_COUNT;
|
||||
|
Reference in New Issue
Block a user