Remove all using directives for STL namespace and members

Made all STL usages explicit to be able automatically find all usages of
particular class or function.
This commit is contained in:
Andrey Kamaev
2013-02-24 20:14:01 +04:00
parent f783f34e0b
commit 2a6fb2867e
310 changed files with 5744 additions and 5964 deletions

View File

@@ -42,7 +42,6 @@
#include "precomp.hpp"
using namespace std;
using namespace cv;
using namespace cv::detail;
@@ -50,7 +49,7 @@ namespace {
struct IncDistance
{
IncDistance(vector<int> &vdists) : dists(&vdists[0]) {}
IncDistance(std::vector<int> &vdists) : dists(&vdists[0]) {}
void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; }
int* dists;
};
@@ -58,7 +57,7 @@ struct IncDistance
struct CalcRotation
{
CalcRotation(int _num_images, const vector<MatchesInfo> &_pairwise_matches, vector<CameraParams> &_cameras)
CalcRotation(int _num_images, const std::vector<MatchesInfo> &_pairwise_matches, std::vector<CameraParams> &_cameras)
: num_images(_num_images), pairwise_matches(&_pairwise_matches[0]), cameras(&_cameras[0]) {}
void operator ()(const GraphEdge &edge)
@@ -101,8 +100,8 @@ void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res)
namespace cv {
namespace detail {
void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches,
vector<CameraParams> &cameras)
void HomographyBasedEstimator::estimate(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches,
std::vector<CameraParams> &cameras)
{
LOGLN("Estimating rotations...");
#if ENABLE_LOG
@@ -113,11 +112,11 @@ void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, c
#if 0
// Robustly estimate focal length from rotating cameras
vector<Mat> Hs;
std::vector<Mat> Hs;
for (int iter = 0; iter < 100; ++iter)
{
int len = 2 + rand()%(pairwise_matches.size() - 1);
vector<int> subset;
std::vector<int> subset;
selectRandomSubset(len, pairwise_matches.size(), subset);
Hs.clear();
for (size_t i = 0; i < subset.size(); ++i)
@@ -135,7 +134,7 @@ void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, c
if (!is_focals_estimated_)
{
// Estimate focal length and set it for all cameras
vector<double> focals;
std::vector<double> focals;
estimateFocal(features, pairwise_matches, focals);
cameras.assign(num_images, CameraParams());
for (int i = 0; i < num_images; ++i)
@@ -152,7 +151,7 @@ void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, c
// Restore global motion
Graph span_tree;
vector<int> span_tree_centers;
std::vector<int> span_tree_centers;
findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers);
span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras));
@@ -169,9 +168,9 @@ void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, c
//////////////////////////////////////////////////////////////////////////////
void BundleAdjusterBase::estimate(const vector<ImageFeatures> &features,
const vector<MatchesInfo> &pairwise_matches,
vector<CameraParams> &cameras)
void BundleAdjusterBase::estimate(const std::vector<ImageFeatures> &features,
const std::vector<MatchesInfo> &pairwise_matches,
std::vector<CameraParams> &cameras)
{
LOG_CHAT("Bundle adjustment");
#if ENABLE_LOG
@@ -192,7 +191,7 @@ void BundleAdjusterBase::estimate(const vector<ImageFeatures> &features,
{
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
if (matches_info.confidence > conf_thresh_)
edges_.push_back(make_pair(i, j));
edges_.push_back(std::make_pair(i, j));
}
}
@@ -242,14 +241,14 @@ void BundleAdjusterBase::estimate(const vector<ImageFeatures> &features,
}
LOGLN_CHAT("");
LOGLN_CHAT("Bundle adjustment, final RMS error: " << sqrt(err.dot(err) / total_num_matches_));
LOGLN_CHAT("Bundle adjustment, final RMS error: " << std::sqrt(err.dot(err) / total_num_matches_));
LOGLN_CHAT("Bundle adjustment, iterations done: " << iter);
obtainRefinedCameraParams(cameras);
// Normalize motion to center image
Graph span_tree;
vector<int> span_tree_centers;
std::vector<int> span_tree_centers;
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers);
Mat R_inv = cameras[span_tree_centers[0]].R.inv();
for (int i = 0; i < num_images_; ++i)
@@ -261,7 +260,7 @@ void BundleAdjusterBase::estimate(const vector<ImageFeatures> &features,
//////////////////////////////////////////////////////////////////////////////
void BundleAdjusterReproj::setUpInitialCameraParams(const vector<CameraParams> &cameras)
void BundleAdjusterReproj::setUpInitialCameraParams(const std::vector<CameraParams> &cameras)
{
cam_params_.create(num_images_ * 7, 1, CV_64F);
SVD svd;
@@ -287,7 +286,7 @@ void BundleAdjusterReproj::setUpInitialCameraParams(const vector<CameraParams> &
}
void BundleAdjusterReproj::obtainRefinedCameraParams(vector<CameraParams> &cameras) const
void BundleAdjusterReproj::obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const
{
for (int i = 0; i < num_images_; ++i)
{
@@ -442,7 +441,7 @@ void BundleAdjusterReproj::calcJacobian(Mat &jac)
//////////////////////////////////////////////////////////////////////////////
void BundleAdjusterRay::setUpInitialCameraParams(const vector<CameraParams> &cameras)
void BundleAdjusterRay::setUpInitialCameraParams(const std::vector<CameraParams> &cameras)
{
cam_params_.create(num_images_ * 4, 1, CV_64F);
SVD svd;
@@ -465,7 +464,7 @@ void BundleAdjusterRay::setUpInitialCameraParams(const vector<CameraParams> &cam
}
void BundleAdjusterRay::obtainRefinedCameraParams(vector<CameraParams> &cameras) const
void BundleAdjusterRay::obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const
{
for (int i = 0; i < num_images_; ++i)
{
@@ -537,17 +536,17 @@ void BundleAdjusterRay::calcError(Mat &err)
double x1 = H1(0,0)*p1.x + H1(0,1)*p1.y + H1(0,2);
double y1 = H1(1,0)*p1.x + H1(1,1)*p1.y + H1(1,2);
double z1 = H1(2,0)*p1.x + H1(2,1)*p1.y + H1(2,2);
double len = sqrt(x1*x1 + y1*y1 + z1*z1);
double len = std::sqrt(x1*x1 + y1*y1 + z1*z1);
x1 /= len; y1 /= len; z1 /= len;
Point2f p2 = features2.keypoints[m.trainIdx].pt;
double x2 = H2(0,0)*p2.x + H2(0,1)*p2.y + H2(0,2);
double y2 = H2(1,0)*p2.x + H2(1,1)*p2.y + H2(1,2);
double z2 = H2(2,0)*p2.x + H2(2,1)*p2.y + H2(2,2);
len = sqrt(x2*x2 + y2*y2 + z2*z2);
len = std::sqrt(x2*x2 + y2*y2 + z2*z2);
x2 /= len; y2 /= len; z2 /= len;
double mult = sqrt(f1 * f2);
double mult = std::sqrt(f1 * f2);
err.at<double>(3 * match_idx, 0) = mult * (x1 - x2);
err.at<double>(3 * match_idx + 1, 0) = mult * (y1 - y2);
err.at<double>(3 * match_idx + 2, 0) = mult * (z1 - z2);
@@ -583,7 +582,7 @@ void BundleAdjusterRay::calcJacobian(Mat &jac)
//////////////////////////////////////////////////////////////////////////////
void waveCorrect(vector<Mat> &rmats, WaveCorrectKind kind)
void waveCorrect(std::vector<Mat> &rmats, WaveCorrectKind kind)
{
LOGLN("Wave correcting...");
#if ENABLE_LOG
@@ -654,14 +653,14 @@ void waveCorrect(vector<Mat> &rmats, WaveCorrectKind kind)
//////////////////////////////////////////////////////////////////////////////
string matchesGraphAsString(vector<string> &pathes, vector<MatchesInfo> &pairwise_matches,
std::string matchesGraphAsString(std::vector<std::string> &pathes, std::vector<MatchesInfo> &pairwise_matches,
float conf_threshold)
{
stringstream str;
std::stringstream str;
str << "graph matches_graph{\n";
const int num_images = static_cast<int>(pathes.size());
set<pair<int,int> > span_tree_edges;
std::set<std::pair<int,int> > span_tree_edges;
DisjointSets comps(num_images);
for (int i = 0; i < num_images; ++i)
@@ -675,25 +674,25 @@ string matchesGraphAsString(vector<string> &pathes, vector<MatchesInfo> &pairwis
if (comp1 != comp2)
{
comps.mergeSets(comp1, comp2);
span_tree_edges.insert(make_pair(i, j));
span_tree_edges.insert(std::make_pair(i, j));
}
}
}
for (set<pair<int,int> >::const_iterator itr = span_tree_edges.begin();
for (std::set<std::pair<int,int> >::const_iterator itr = span_tree_edges.begin();
itr != span_tree_edges.end(); ++itr)
{
pair<int,int> edge = *itr;
std::pair<int,int> edge = *itr;
if (span_tree_edges.find(edge) != span_tree_edges.end())
{
string name_src = pathes[edge.first];
std::string name_src = pathes[edge.first];
size_t prefix_len = name_src.find_last_of("/\\");
if (prefix_len != string::npos) prefix_len++; else prefix_len = 0;
if (prefix_len != std::string::npos) prefix_len++; else prefix_len = 0;
name_src = name_src.substr(prefix_len, name_src.size() - prefix_len);
string name_dst = pathes[edge.second];
std::string name_dst = pathes[edge.second];
prefix_len = name_dst.find_last_of("/\\");
if (prefix_len != string::npos) prefix_len++; else prefix_len = 0;
if (prefix_len != std::string::npos) prefix_len++; else prefix_len = 0;
name_dst = name_dst.substr(prefix_len, name_dst.size() - prefix_len);
int pos = edge.first*num_images + edge.second;
@@ -708,9 +707,9 @@ string matchesGraphAsString(vector<string> &pathes, vector<MatchesInfo> &pairwis
{
if (comps.size[comps.findSetByElem((int)i)] == 1)
{
string name = pathes[i];
std::string name = pathes[i];
size_t prefix_len = name.find_last_of("/\\");
if (prefix_len != string::npos) prefix_len++; else prefix_len = 0;
if (prefix_len != std::string::npos) prefix_len++; else prefix_len = 0;
name = name.substr(prefix_len, name.size() - prefix_len);
str << "\"" << name << "\";\n";
}
@@ -720,7 +719,7 @@ string matchesGraphAsString(vector<string> &pathes, vector<MatchesInfo> &pairwis
return str.str();
}
vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches,
std::vector<int> leaveBiggestComponent(std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
float conf_threshold)
{
const int num_images = static_cast<int>(features.size());
@@ -739,18 +738,18 @@ vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<Match
}
}
int max_comp = static_cast<int>(max_element(comps.size.begin(), comps.size.end()) - comps.size.begin());
int max_comp = static_cast<int>(std::max_element(comps.size.begin(), comps.size.end()) - comps.size.begin());
vector<int> indices;
vector<int> indices_removed;
std::vector<int> indices;
std::vector<int> indices_removed;
for (int i = 0; i < num_images; ++i)
if (comps.findSetByElem(i) == max_comp)
indices.push_back(i);
else
indices_removed.push_back(i);
vector<ImageFeatures> features_subset;
vector<MatchesInfo> pairwise_matches_subset;
std::vector<ImageFeatures> features_subset;
std::vector<MatchesInfo> pairwise_matches_subset;
for (size_t i = 0; i < indices.size(); ++i)
{
features_subset.push_back(features[indices[i]]);
@@ -779,11 +778,11 @@ vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<Match
}
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
Graph &span_tree, vector<int> &centers)
void findMaxSpanningTree(int num_images, const std::vector<MatchesInfo> &pairwise_matches,
Graph &span_tree, std::vector<int> &centers)
{
Graph graph(num_images);
vector<GraphEdge> edges;
std::vector<GraphEdge> edges;
// Construct images graph and remember its edges
for (int i = 0; i < num_images; ++i)
@@ -800,10 +799,10 @@ void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_mat
DisjointSets comps(num_images);
span_tree.create(num_images);
vector<int> span_tree_powers(num_images, 0);
std::vector<int> span_tree_powers(num_images, 0);
// Find maximum spanning tree
sort(edges.begin(), edges.end(), greater<GraphEdge>());
sort(edges.begin(), edges.end(), std::greater<GraphEdge>());
for (size_t i = 0; i < edges.size(); ++i)
{
int comp1 = comps.findSetByElem(edges[i].from);
@@ -819,20 +818,20 @@ void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_mat
}
// Find spanning tree leafs
vector<int> span_tree_leafs;
std::vector<int> span_tree_leafs;
for (int i = 0; i < num_images; ++i)
if (span_tree_powers[i] == 1)
span_tree_leafs.push_back(i);
// Find maximum distance from each spanning tree vertex
vector<int> max_dists(num_images, 0);
vector<int> cur_dists;
std::vector<int> max_dists(num_images, 0);
std::vector<int> cur_dists;
for (size_t i = 0; i < span_tree_leafs.size(); ++i)
{
cur_dists.assign(num_images, 0);
span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists));
for (int j = 0; j < num_images; ++j)
max_dists[j] = max(max_dists[j], cur_dists[j]);
max_dists[j] = std::max(max_dists[j], cur_dists[j]);
}
// Find min-max distance