Remove all using directives for STL namespace and members

Made all STL usages explicit to be able automatically find all usages of
particular class or function.
This commit is contained in:
Andrey Kamaev
2013-02-24 20:14:01 +04:00
parent f783f34e0b
commit 2a6fb2867e
310 changed files with 5744 additions and 5964 deletions

View File

@@ -120,7 +120,7 @@ bool HOGDescriptor::read(FileNode& obj)
return true;
}
void HOGDescriptor::write(FileStorage& fs, const String& objName) const
void HOGDescriptor::write(FileStorage& fs, const std::string& objName) const
{
if( !objName.empty() )
fs << objName;
@@ -142,14 +142,14 @@ void HOGDescriptor::write(FileStorage& fs, const String& objName) const
fs << "}";
}
bool HOGDescriptor::load(const String& filename, const String& objname)
bool HOGDescriptor::load(const std::string& filename, const std::string& objname)
{
FileStorage fs(filename, FileStorage::READ);
FileNode obj = !objname.empty() ? fs[objname] : fs.getFirstTopLevelNode();
return read(obj);
}
void HOGDescriptor::save(const String& filename, const String& objName) const
void HOGDescriptor::save(const std::string& filename, const std::string& objName) const
{
FileStorage fs(filename, FileStorage::WRITE);
write(fs, !objName.empty() ? objName : FileStorage::getDefaultObjectName(filename));
@@ -409,11 +409,11 @@ struct HOGCache
const float* getBlock(Point pt, float* buf);
virtual void normalizeBlockHistogram(float* histogram) const;
vector<PixData> pixData;
vector<BlockData> blockData;
std::vector<PixData> pixData;
std::vector<BlockData> blockData;
bool useCache;
vector<int> ymaxCached;
std::vector<int> ymaxCached;
Size winSize, cacheStride;
Size nblocks, ncells;
int blockHistogramSize;
@@ -791,9 +791,9 @@ Rect HOGCache::getWindow(Size imageSize, Size winStride, int idx) const
}
void HOGDescriptor::compute(const Mat& img, vector<float>& descriptors,
void HOGDescriptor::compute(const Mat& img, std::vector<float>& descriptors,
Size winStride, Size padding,
const vector<Point>& locations) const
const std::vector<Point>& locations) const
{
if( winStride == Size() )
winStride = cellSize;
@@ -854,8 +854,8 @@ void HOGDescriptor::compute(const Mat& img, vector<float>& descriptors,
void HOGDescriptor::detect(const Mat& img,
vector<Point>& hits, vector<double>& weights, double hitThreshold,
Size winStride, Size padding, const vector<Point>& locations) const
std::vector<Point>& hits, std::vector<double>& weights, double hitThreshold,
Size winStride, Size padding, const std::vector<Point>& locations) const
{
hits.clear();
if( svmDetector.empty() )
@@ -882,7 +882,7 @@ void HOGDescriptor::detect(const Mat& img,
size_t dsize = getDescriptorSize();
double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0;
vector<float> blockHist(blockHistogramSize);
std::vector<float> blockHist(blockHistogramSize);
for( size_t i = 0; i < nwindows; i++ )
{
@@ -932,10 +932,10 @@ void HOGDescriptor::detect(const Mat& img,
}
}
void HOGDescriptor::detect(const Mat& img, vector<Point>& hits, double hitThreshold,
Size winStride, Size padding, const vector<Point>& locations) const
void HOGDescriptor::detect(const Mat& img, std::vector<Point>& hits, double hitThreshold,
Size winStride, Size padding, const std::vector<Point>& locations) const
{
vector<double> weightsV;
std::vector<double> weightsV;
detect(img, hits, weightsV, hitThreshold, winStride, padding, locations);
}
@@ -965,8 +965,8 @@ public:
double minScale = i1 > 0 ? levelScale[i1] : i2 > 1 ? levelScale[i1+1] : std::max(img.cols, img.rows);
Size maxSz(cvCeil(img.cols/minScale), cvCeil(img.rows/minScale));
Mat smallerImgBuf(maxSz, img.type());
vector<Point> locations;
vector<double> hitsWeights;
std::vector<Point> locations;
std::vector<double> hitsWeights;
for( i = i1; i < i2; i++ )
{
@@ -1019,14 +1019,14 @@ public:
void HOGDescriptor::detectMultiScale(
const Mat& img, vector<Rect>& foundLocations, vector<double>& foundWeights,
const Mat& img, std::vector<Rect>& foundLocations, std::vector<double>& foundWeights,
double hitThreshold, Size winStride, Size padding,
double scale0, double finalThreshold, bool useMeanshiftGrouping) const
{
double scale = 1.;
int levels = 0;
vector<double> levelScale;
std::vector<double> levelScale;
for( levels = 0; levels < nlevels; levels++ )
{
levelScale.push_back(scale);
@@ -1064,11 +1064,11 @@ void HOGDescriptor::detectMultiScale(
}
}
void HOGDescriptor::detectMultiScale(const Mat& img, vector<Rect>& foundLocations,
void HOGDescriptor::detectMultiScale(const Mat& img, std::vector<Rect>& foundLocations,
double hitThreshold, Size winStride, Size padding,
double scale0, double finalThreshold, bool useMeanshiftGrouping) const
{
vector<double> foundWeights;
std::vector<double> foundWeights;
detectMultiScale(img, foundLocations, foundWeights, hitThreshold, winStride,
padding, scale0, finalThreshold, useMeanshiftGrouping);
}
@@ -1078,7 +1078,7 @@ typedef RTTIImpl<HOGDescriptor> HOGRTTI;
CvType hog_type( CV_TYPE_NAME_HOG_DESCRIPTOR, HOGRTTI::isInstance,
HOGRTTI::release, HOGRTTI::read, HOGRTTI::write, HOGRTTI::clone);
vector<float> HOGDescriptor::getDefaultPeopleDetector()
std::vector<float> HOGDescriptor::getDefaultPeopleDetector()
{
static const float detector[] = {
0.05359386f, -0.14721455f, -0.05532170f, 0.05077307f,
@@ -1886,11 +1886,11 @@ vector<float> HOGDescriptor::getDefaultPeopleDetector()
-0.01612278f, -1.46097376e-003f, 0.14013411f, -8.96181818e-003f,
-0.03250246f, 3.38630192e-003f, 2.64779478e-003f, 0.03359732f,
-0.02411991f, -0.04229729f, 0.10666174f, -6.66579151f };
return vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
return std::vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
}
//This function renurn 1981 SVM coeffs obtained from daimler's base.
//To use these coeffs the detection window size should be (48,96)
vector<float> HOGDescriptor::getDaimlerPeopleDetector()
std::vector<float> HOGDescriptor::getDaimlerPeopleDetector()
{
static const float detector[] = {
0.294350f, -0.098796f, -0.129522f, 0.078753f,
@@ -2389,7 +2389,7 @@ vector<float> HOGDescriptor::getDaimlerPeopleDetector()
-0.025054f, -0.093026f, -0.035372f, -0.233209f,
-0.049869f, -0.039151f, -0.022279f, -0.065380f,
-9.063785f};
return vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
return std::vector<float>(detector, detector + sizeof(detector)/sizeof(detector[0]));
}
class HOGConfInvoker : public ParallelLoopBody
@@ -2415,7 +2415,7 @@ public:
Size maxSz(cvCeil(img.cols/(*locations)[0].scale), cvCeil(img.rows/(*locations)[0].scale));
Mat smallerImgBuf(maxSz, img.type());
vector<Point> dets;
std::vector<Point> dets;
for( i = i1; i < i2; i++ )
{
@@ -2451,7 +2451,7 @@ public:
Mutex* mtx;
};
void HOGDescriptor::detectROI(const cv::Mat& img, const vector<cv::Point> &locations,
void HOGDescriptor::detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
double hitThreshold, cv::Size winStride,
cv::Size padding) const
@@ -2489,7 +2489,7 @@ void HOGDescriptor::detectROI(const cv::Mat& img, const vector<cv::Point> &locat
size_t dsize = getDescriptorSize();
double rho = svmDetector.size() > dsize ? svmDetector[dsize] : 0;
vector<float> blockHist(blockHistogramSize);
std::vector<float> blockHist(blockHistogramSize);
for( size_t i = 0; i < nwindows; i++ )
{