Remove all using directives for STL namespace and members

Made all STL usages explicit to be able automatically find all usages of
particular class or function.
This commit is contained in:
Andrey Kamaev
2013-02-24 20:14:01 +04:00
parent f783f34e0b
commit 2a6fb2867e
310 changed files with 5744 additions and 5964 deletions

View File

@@ -1256,8 +1256,8 @@ static void initLabTabs()
for(i = 0; i <= GAMMA_TAB_SIZE; i++)
{
float x = i*scale;
g[i] = x <= 0.04045f ? x*(1.f/12.92f) : (float)pow((double)(x + 0.055)*(1./1.055), 2.4);
ig[i] = x <= 0.0031308 ? x*12.92f : (float)(1.055*pow((double)x, 1./2.4) - 0.055);
g[i] = x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4);
ig[i] = x <= 0.0031308 ? x*12.92f : (float)(1.055*std::pow((double)x, 1./2.4) - 0.055);
}
splineBuild(g, GAMMA_TAB_SIZE, sRGBGammaTab);
splineBuild(ig, GAMMA_TAB_SIZE, sRGBInvGammaTab);
@@ -1265,7 +1265,7 @@ static void initLabTabs()
for(i = 0; i < 256; i++)
{
float x = i*(1.f/255.f);
sRGBGammaTab_b[i] = saturate_cast<ushort>(255.f*(1 << gamma_shift)*(x <= 0.04045f ? x*(1.f/12.92f) : (float)pow((double)(x + 0.055)*(1./1.055), 2.4)));
sRGBGammaTab_b[i] = saturate_cast<ushort>(255.f*(1 << gamma_shift)*(x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4)));
linearGammaTab_b[i] = (ushort)(i*(1 << gamma_shift));
}
@@ -1408,9 +1408,9 @@ struct RGB2Lab_f
float Y = R*C3 + G*C4 + B*C5;
float Z = R*C6 + G*C7 + B*C8;
float FX = X > 0.008856f ? pow(X, _1_3) : (7.787f * X + _a);
float FY = Y > 0.008856f ? pow(Y, _1_3) : (7.787f * Y + _a);
float FZ = Z > 0.008856f ? pow(Z, _1_3) : (7.787f * Z + _a);
float FX = X > 0.008856f ? std::pow(X, _1_3) : (7.787f * X + _a);
float FY = Y > 0.008856f ? std::pow(Y, _1_3) : (7.787f * Y + _a);
float FZ = Z > 0.008856f ? std::pow(Z, _1_3) : (7.787f * Z + _a);
float L = Y > 0.008856f ? (116.f * FY - 16.f) : (903.3f * Y);
float a = 500.f * (FX - FY);

View File

@@ -113,7 +113,7 @@ static int Sklansky_( Point_<_Tp>** array, int start, int end, int* stack, int n
stack[stacksize-1] = pnext;
}
}
return --stacksize;
}
@@ -210,7 +210,7 @@ void convexHull( InputArray _points, OutputArray _hull, bool clockwise, bool ret
for( i = tr_count - 1; i > 0; i-- )
hullbuf[nout++] = pointer[tr_stack[i]] - data0;
int stop_idx = tr_count > 2 ? tr_stack[1] : tl_count > 2 ? tl_stack[tl_count - 2] : -1;
// lower half
int *bl_stack = stack;
int bl_count = !is_float ?
@@ -280,7 +280,7 @@ void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defect
const Point* ptr = (const Point*)points.data;
const int* hptr = hull.ptr<int>();
vector<Vec4i> defects;
std::vector<Vec4i> defects;
// 1. recognize co-orientation of the contour and its hull
bool rev_orientation = ((hptr[1] > hptr[0]) + (hptr[2] > hptr[1]) + (hptr[0] > hptr[2])) != 2;
@@ -297,7 +297,7 @@ void convexityDefects( InputArray _points, InputArray _hull, OutputArray _defect
Point pt0 = ptr[hcurr], pt1 = ptr[hnext];
double dx0 = pt1.x - pt0.x;
double dy0 = pt1.y - pt0.y;
double scale = dx0 == 0 && dy0 == 0 ? 0. : 1./sqrt(dx0*dx0 + dy0*dy0);
double scale = dx0 == 0 && dy0 == 0 ? 0. : 1./std::sqrt(dx0*dx0 + dy0*dy0);
int defect_deepest_point = -1;
double defect_depth = 0;
@@ -380,10 +380,10 @@ bool isContourConvex( InputArray _contour )
Mat contour = _contour.getMat();
int total = contour.checkVector(2), depth = contour.depth();
CV_Assert(total >= 0 && (depth == CV_32F || depth == CV_32S));
if( total == 0 )
return false;
return depth == CV_32S ?
isContourConvex_((const Point*)contour.data, total ) :
isContourConvex_((const Point2f*)contour.data, total );
@@ -502,7 +502,7 @@ cvConvexHull2( const CvArr* array, void* hull_storage,
ptseq->header_size < (int)sizeof(CvContour) ||
&ptseq->flags == &contour_header.flags );
}
return hull.s;
}
@@ -658,7 +658,7 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
dx0 = (double)hull_next->x - (double)hull_cur->x;
dy0 = (double)hull_next->y - (double)hull_cur->y;
assert( dx0 != 0 || dy0 != 0 );
scale = 1./sqrt(dx0*dx0 + dy0*dy0);
scale = 1./std::sqrt(dx0*dx0 + dy0*dy0);
defect.start = hull_cur;
defect.end = hull_next;

View File

@@ -100,7 +100,7 @@ static void getSobelKernels( OutputArray _kx, OutputArray _ky,
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );

View File

@@ -75,7 +75,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
Size imgsize = image.size();
vector<const float*> tmpCorners;
std::vector<const float*> tmpCorners;
// collect list of pointers to features - put them into temporary image
for( int y = 1; y < imgsize.height - 1; y++ )
@@ -93,7 +93,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
}
sort( tmpCorners, greaterThanPtr<float>() );
vector<Point2f> corners;
std::vector<Point2f> corners;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
if(minDistance >= 1)
@@ -136,7 +136,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
{
for( int xx = x1; xx <= x2; xx++ )
{
vector <Point2f> &m = grid[yy*grid_width + xx];
std::vector <Point2f> &m = grid[yy*grid_width + xx];
if( m.size() )
{
@@ -224,7 +224,7 @@ cvGoodFeaturesToTrack( const void* _image, void*, void*,
int use_harris, double harris_k )
{
cv::Mat image = cv::cvarrToMat(_image), mask;
cv::vector<cv::Point2f> corners;
std::vector<cv::Point2f> corners;
if( _maskImage )
mask = cv::cvarrToMat(_maskImage);

View File

@@ -1954,7 +1954,7 @@ struct FilterVec_8u
Mat kernel;
_kernel.convertTo(kernel, CV_32F, 1./(1 << _bits), 0);
delta = (float)(_delta/(1 << _bits));
vector<Point> coords;
std::vector<Point> coords;
preprocess2DKernel(kernel, coords, coeffs);
_nz = (int)coords.size();
}
@@ -2024,7 +2024,7 @@ struct FilterVec_8u
}
int _nz;
vector<uchar> coeffs;
std::vector<uchar> coeffs;
float delta;
};
@@ -2037,7 +2037,7 @@ struct FilterVec_8u16s
Mat kernel;
_kernel.convertTo(kernel, CV_32F, 1./(1 << _bits), 0);
delta = (float)(_delta/(1 << _bits));
vector<Point> coords;
std::vector<Point> coords;
preprocess2DKernel(kernel, coords, coeffs);
_nz = (int)coords.size();
}
@@ -2107,7 +2107,7 @@ struct FilterVec_8u16s
}
int _nz;
vector<uchar> coeffs;
std::vector<uchar> coeffs;
float delta;
};
@@ -2118,7 +2118,7 @@ struct FilterVec_32f
FilterVec_32f(const Mat& _kernel, int, double _delta)
{
delta = (float)_delta;
vector<Point> coords;
std::vector<Point> coords;
preprocess2DKernel(_kernel, coords, coeffs);
_nz = (int)coords.size();
}
@@ -2179,7 +2179,7 @@ struct FilterVec_32f
}
int _nz;
vector<uchar> coeffs;
std::vector<uchar> coeffs;
float delta;
};
@@ -2989,7 +2989,7 @@ cv::Ptr<cv::FilterEngine> cv::createSeparableLinearFilter(
namespace cv
{
void preprocess2DKernel( const Mat& kernel, vector<Point>& coords, vector<uchar>& coeffs )
void preprocess2DKernel( const Mat& kernel, std::vector<Point>& coords, std::vector<uchar>& coeffs )
{
int i, j, k, nz = countNonZero(kernel), ktype = kernel.type();
if(nz == 0)
@@ -3107,9 +3107,9 @@ template<typename ST, class CastOp, class VecOp> struct Filter2D : public BaseFi
}
}
vector<Point> coords;
vector<uchar> coeffs;
vector<uchar*> ptrs;
std::vector<Point> coords;
std::vector<uchar> coeffs;
std::vector<uchar*> ptrs;
KT delta;
CastOp castOp0;
VecOp vecOp;

View File

@@ -457,7 +457,7 @@ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
Scalar loDiff, Scalar upDiff, int flags )
{
ConnectedComp comp;
vector<FFillSegment> buffer;
std::vector<FFillSegment> buffer;
if( rect )
*rect = Rect();

View File

@@ -84,7 +84,7 @@ cv::Mat cv::getGaborKernel( Size ksize, double sigma, double theta,
double xr = x*c + y*s;
double yr = -x*s + y*c;
double v = scale*exp(ex*xr*xr + ey*yr*yr)*cos(cscale*xr + psi);
double v = scale*std::exp(ex*xr*xr + ey*yr*yr)*cos(cscale*xr + psi);
if( ktype == CV_32F )
kernel.at<float>(ymax - y, xmax - x) = (float)v;
else

View File

@@ -42,7 +42,6 @@
#include "precomp.hpp"
#include <functional>
using namespace std;
using namespace cv;
namespace
@@ -50,9 +49,9 @@ namespace
/////////////////////////////////////
// Common
template <typename T, class A> void releaseVector(vector<T, A>& v)
template <typename T, class A> void releaseVector(std::vector<T, A>& v)
{
vector<T, A> empty;
std::vector<T, A> empty;
empty.swap(v);
}
@@ -63,7 +62,7 @@ namespace
bool notNull(float v)
{
return fabs(v) > numeric_limits<float>::epsilon();
return fabs(v) > std::numeric_limits<float>::epsilon();
}
class GHT_Pos : public GeneralizedHough
@@ -95,8 +94,8 @@ namespace
Mat imageDx;
Mat imageDy;
vector<Vec4f> posOutBuf;
vector<Vec3i> voteOutBuf;
std::vector<Vec4f> posOutBuf;
std::vector<Vec3i> voteOutBuf;
};
GHT_Pos::GHT_Pos()
@@ -168,10 +167,10 @@ namespace
CV_Assert(!hasVotes || voteOutBuf.size() == oldSize);
vector<Vec4f> oldPosBuf(posOutBuf);
vector<Vec3i> oldVoteBuf(voteOutBuf);
std::vector<Vec4f> oldPosBuf(posOutBuf);
std::vector<Vec3i> oldVoteBuf(voteOutBuf);
vector<size_t> indexies(oldSize);
std::vector<size_t> indexies(oldSize);
for (size_t i = 0; i < oldSize; ++i)
indexies[i] = i;
sortIndexies(&indexies[0], oldSize, &oldVoteBuf[0]);
@@ -183,7 +182,7 @@ namespace
const int gridWidth = (imageSize.width + cellSize - 1) / cellSize;
const int gridHeight = (imageSize.height + cellSize - 1) / cellSize;
vector< vector<Point2f> > grid(gridWidth * gridHeight);
std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight);
const double minDist2 = minDist * minDist;
@@ -213,7 +212,7 @@ namespace
{
for (int xx = x1; xx <= x2; ++xx)
{
const vector<Point2f>& m = grid[yy * gridWidth + xx];
const std::vector<Point2f>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
@@ -288,7 +287,7 @@ namespace
int votesThreshold;
double dp;
vector< vector<Point> > r_table;
std::vector< std::vector<Point> > r_table;
Mat hist;
};
@@ -327,7 +326,7 @@ namespace
const double thetaScale = levels / 360.0;
r_table.resize(levels + 1);
for_each(r_table.begin(), r_table.end(), mem_fun_ref(&vector<Point>::clear));
for_each(r_table.begin(), r_table.end(), mem_fun_ref(&std::vector<Point>::clear));
for (int y = 0; y < templSize.height; ++y)
{
@@ -387,7 +386,7 @@ namespace
const float theta = fastAtan2(dyRow[x], dxRow[x]);
const int n = cvRound(theta * thetaScale);
const vector<Point>& r_row = r_table[n];
const std::vector<Point>& r_row = r_table[n];
for (size_t j = 0; j < r_row.size(); ++j)
{
@@ -512,7 +511,7 @@ namespace
const float theta = fastAtan2(dyRow[x], dxRow[x]);
const int n = cvRound(theta * thetaScale);
const vector<Point>& r_row = base->r_table[n];
const std::vector<Point>& r_row = base->r_table[n];
for (size_t j = 0; j < r_row.size(); ++j)
{
@@ -682,7 +681,7 @@ namespace
theta += 360.0;
const int n = cvRound(theta * thetaScale);
const vector<Point>& r_row = base->r_table[n];
const std::vector<Point>& r_row = base->r_table[n];
for (size_t j = 0; j < r_row.size(); ++j)
{
@@ -816,8 +815,8 @@ namespace
Point2d r2;
};
void buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, vector< vector<Feature> >& features, Point2d center = Point2d());
void getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, vector<ContourPoint>& points);
void buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector<Feature> >& features, Point2d center = Point2d());
void getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector<ContourPoint>& points);
void calcOrientation();
void calcScale(double angle);
@@ -841,11 +840,11 @@ namespace
double dp;
int posThresh;
vector< vector<Feature> > templFeatures;
vector< vector<Feature> > imageFeatures;
std::vector< std::vector<Feature> > templFeatures;
std::vector< std::vector<Feature> > imageFeatures;
vector< pair<double, int> > angles;
vector< pair<double, int> > scales;
std::vector< std::pair<double, int> > angles;
std::vector< std::pair<double, int> > scales;
};
CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough.POSITION_SCALE_ROTATION",
@@ -940,7 +939,7 @@ namespace
}
}
void GHT_Guil_Full::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, vector< vector<Feature> >& features, Point2d center)
void GHT_Guil_Full::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, std::vector< std::vector<Feature> >& features, Point2d center)
{
CV_Assert(levels > 0);
@@ -948,12 +947,12 @@ namespace
const double alphaScale = levels / 360.0;
vector<ContourPoint> points;
std::vector<ContourPoint> points;
getContourPoints(edges, dx, dy, points);
features.resize(levels + 1);
for_each(features.begin(), features.end(), mem_fun_ref(&vector<Feature>::clear));
for_each(features.begin(), features.end(), bind2nd(mem_fun_ref(&vector<Feature>::reserve), maxSize));
for_each(features.begin(), features.end(), mem_fun_ref(&std::vector<Feature>::clear));
for_each(features.begin(), features.end(), bind2nd(mem_fun_ref(&std::vector<Feature>::reserve), maxSize));
for (size_t i = 0; i < points.size(); ++i)
{
@@ -990,7 +989,7 @@ namespace
}
}
void GHT_Guil_Full::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, vector<ContourPoint>& points)
void GHT_Guil_Full::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, std::vector<ContourPoint>& points)
{
CV_Assert(edges.type() == CV_8UC1);
CV_Assert(dx.type() == CV_32FC1 && dx.size == edges.size);
@@ -1032,11 +1031,11 @@ namespace
const double iAngleStep = 1.0 / angleStep;
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
vector<int> OHist(angleRange + 1, 0);
std::vector<int> OHist(angleRange + 1, 0);
for (int i = 0; i <= levels; ++i)
{
const vector<Feature>& templRow = templFeatures[i];
const vector<Feature>& imageRow = imageFeatures[i];
const std::vector<Feature>& templRow = templFeatures[i];
const std::vector<Feature>& imageRow = imageFeatures[i];
for (size_t j = 0; j < templRow.size(); ++j)
{
@@ -1063,7 +1062,7 @@ namespace
if (OHist[n] >= angleThresh)
{
const double angle = minAngle + n * angleStep;
angles.push_back(make_pair(angle, OHist[n]));
angles.push_back(std::make_pair(angle, OHist[n]));
}
}
}
@@ -1080,12 +1079,12 @@ namespace
const double iScaleStep = 1.0 / scaleStep;
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
vector<int> SHist(scaleRange + 1, 0);
std::vector<int> SHist(scaleRange + 1, 0);
for (int i = 0; i <= levels; ++i)
{
const vector<Feature>& templRow = templFeatures[i];
const vector<Feature>& imageRow = imageFeatures[i];
const std::vector<Feature>& templRow = templFeatures[i];
const std::vector<Feature>& imageRow = imageFeatures[i];
for (size_t j = 0; j < templRow.size(); ++j)
{
@@ -1117,7 +1116,7 @@ namespace
if (SHist[s] >= scaleThresh)
{
const double scale = minScale + s * scaleStep;
scales.push_back(make_pair(scale, SHist[s]));
scales.push_back(std::make_pair(scale, SHist[s]));
}
}
}
@@ -1141,8 +1140,8 @@ namespace
for (int i = 0; i <= levels; ++i)
{
const vector<Feature>& templRow = templFeatures[i];
const vector<Feature>& imageRow = imageFeatures[i];
const std::vector<Feature>& templRow = templFeatures[i];
const std::vector<Feature>& imageRow = imageFeatures[i];
for (size_t j = 0; j < templRow.size(); ++j)
{

View File

@@ -231,13 +231,13 @@ double cv::pointPolygonTest( InputArray _contour, Point2f pt, bool measureDist )
dist_num = -dist_num;
counter += dist_num > 0;
}
result = sqrt(min_dist_num/min_dist_denom);
result = std::sqrt(min_dist_num/min_dist_denom);
if( counter % 2 == 0 )
result = -result;
}
}
return result;
}

View File

@@ -347,10 +347,10 @@ static void initMaskWithRect( Mat& mask, Size imgSize, Rect rect )
mask.create( imgSize, CV_8UC1 );
mask.setTo( GC_BGD );
rect.x = max(0, rect.x);
rect.y = max(0, rect.y);
rect.width = min(rect.width, imgSize.width-rect.x);
rect.height = min(rect.height, imgSize.height-rect.y);
rect.x = std::max(0, rect.x);
rect.y = std::max(0, rect.y);
rect.width = std::min(rect.width, imgSize.width-rect.x);
rect.height = std::min(rect.height, imgSize.height-rect.y);
(mask(rect)).setTo( Scalar(GC_PR_FGD) );
}
@@ -364,7 +364,7 @@ static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM
const int kMeansType = KMEANS_PP_CENTERS;
Mat bgdLabels, fgdLabels;
vector<Vec3f> bgdSamples, fgdSamples;
std::vector<Vec3f> bgdSamples, fgdSamples;
Point p;
for( p.y = 0; p.y < img.rows; p.y++ )
{

View File

@@ -54,7 +54,7 @@ static const size_t OUT_OF_RANGE = (size_t)1 << (sizeof(size_t)*8 - 2);
static void
calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist,
int dims, const float** ranges, const double* uniranges,
bool uniform, bool issparse, vector<size_t>& _tab )
bool uniform, bool issparse, std::vector<size_t>& _tab )
{
const int low = 0, high = 256;
int i, j;
@@ -117,8 +117,8 @@ calcHistLookupTables_8u( const Mat& hist, const SparseMat& shist,
static void histPrepareImages( const Mat* images, int nimages, const int* channels,
const Mat& mask, int dims, const int* histSize,
const float** ranges, bool uniform,
vector<uchar*>& ptrs, vector<int>& deltas,
Size& imsize, vector<double>& uniranges )
std::vector<uchar*>& ptrs, std::vector<int>& deltas,
Size& imsize, std::vector<double>& uniranges )
{
int i, j, c;
CV_Assert( channels != 0 || nimages == dims );
@@ -216,7 +216,7 @@ template<typename T>
class calcHist1D_Invoker
{
public:
calcHist1D_Invoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcHist1D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Mat& hist, const double* _uniranges, int sz, int dims,
Size& imageSize )
: mask_(_ptrs[dims]),
@@ -288,7 +288,7 @@ template<typename T>
class calcHist2D_Invoker
{
public:
calcHist2D_Invoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcHist2D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Mat& hist, const double* _uniranges, const int* size,
int dims, Size& imageSize, size_t* hstep )
: mask_(_ptrs[dims]),
@@ -362,7 +362,7 @@ template<typename T>
class calcHist3D_Invoker
{
public:
calcHist3D_Invoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcHist3D_Invoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, const double* uniranges, int _dims,
size_t* hstep, int* size )
: mask_(_ptrs[_dims]),
@@ -448,8 +448,8 @@ private:
class CalcHist1D_8uInvoker
{
public:
CalcHist1D_8uInvoker( const vector<uchar*>& ptrs, const vector<int>& deltas,
Size imsize, Mat& hist, int dims, const vector<size_t>& tab,
CalcHist1D_8uInvoker( const std::vector<uchar*>& ptrs, const std::vector<int>& deltas,
Size imsize, Mat& hist, int dims, const std::vector<size_t>& tab,
tbb::mutex* lock )
: mask_(ptrs[dims]),
mstep_(deltas[dims*2 + 1]),
@@ -569,8 +569,8 @@ private:
class CalcHist2D_8uInvoker
{
public:
CalcHist2D_8uInvoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
Size imsize, Mat& hist, int dims, const vector<size_t>& _tab,
CalcHist2D_8uInvoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, int dims, const std::vector<size_t>& _tab,
tbb::mutex* lock )
: mask_(_ptrs[dims]),
mstep_(_deltas[dims*2 + 1]),
@@ -654,8 +654,8 @@ private:
class CalcHist3D_8uInvoker
{
public:
CalcHist3D_8uInvoker( const vector<uchar*>& _ptrs, const vector<int>& _deltas,
Size imsize, Mat& hist, int dims, const vector<size_t>& tab )
CalcHist3D_8uInvoker( const std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, int dims, const std::vector<size_t>& tab )
: mask_(_ptrs[dims]),
mstep_(_deltas[dims*2 + 1]),
histogramSize_(hist.size.p), histogramType_(hist.type()),
@@ -723,8 +723,8 @@ private:
};
static void
callCalcHist2D_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
Size imsize, Mat& hist, int dims, vector<size_t>& _tab )
callCalcHist2D_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, int dims, std::vector<size_t>& _tab )
{
int grainSize = imsize.height / tbb::task_scheduler_init::default_num_threads();
tbb::mutex histogramWriteLock;
@@ -734,8 +734,8 @@ callCalcHist2D_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
}
static void
callCalcHist3D_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
Size imsize, Mat& hist, int dims, vector<size_t>& _tab )
callCalcHist3D_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, int dims, std::vector<size_t>& _tab )
{
CalcHist3D_8uInvoker body(_ptrs, _deltas, imsize, hist, dims, _tab);
parallel_for(BlockedRange(0, imsize.height), body);
@@ -743,7 +743,7 @@ callCalcHist3D_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
#endif
template<typename T> static void
calcHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, int dims, const float** _ranges,
const double* _uniranges, bool uniform )
{
@@ -976,7 +976,7 @@ calcHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
static void
calcHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcHist_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, Mat& hist, int dims, const float** _ranges,
const double* _uniranges, bool uniform )
{
@@ -986,7 +986,7 @@ calcHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
int x;
const uchar* mask = _ptrs[dims];
int mstep = _deltas[dims*2 + 1];
vector<size_t> _tab;
std::vector<size_t> _tab;
calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab );
const size_t* tab = &_tab[0];
@@ -1189,9 +1189,9 @@ void cv::calcHist( const Mat* images, int nimages, const int* channels,
else
hist.convertTo(ihist, CV_32S);
vector<uchar*> ptrs;
vector<int> deltas;
vector<double> uniranges;
std::vector<uchar*> ptrs;
std::vector<int> deltas;
std::vector<double> uniranges;
Size imsize;
CV_Assert( !mask.data || mask.type() == CV_8UC1 );
@@ -1218,7 +1218,7 @@ namespace cv
{
template<typename T> static void
calcSparseHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcSparseHist_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, SparseMat& hist, int dims, const float** _ranges,
const double* _uniranges, bool uniform )
{
@@ -1302,7 +1302,7 @@ calcSparseHist_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
static void
calcSparseHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcSparseHist_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, SparseMat& hist, int dims, const float** _ranges,
const double* _uniranges, bool uniform )
{
@@ -1312,7 +1312,7 @@ calcSparseHist_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
const uchar* mask = _ptrs[dims];
int mstep = _deltas[dims*2 + 1];
int idx[CV_MAX_DIM];
vector<size_t> _tab;
std::vector<size_t> _tab;
calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab );
const size_t* tab = &_tab[0];
@@ -1362,9 +1362,9 @@ static void calcHist( const Mat* images, int nimages, const int* channels,
}
}
vector<uchar*> ptrs;
vector<int> deltas;
vector<double> uniranges;
std::vector<uchar*> ptrs;
std::vector<int> deltas;
std::vector<double> uniranges;
Size imsize;
CV_Assert( !mask.data || mask.type() == CV_8UC1 );
@@ -1405,10 +1405,10 @@ void cv::calcHist( const Mat* images, int nimages, const int* channels,
}
void cv::calcHist( InputArrayOfArrays images, const vector<int>& channels,
void cv::calcHist( InputArrayOfArrays images, const std::vector<int>& channels,
InputArray mask, OutputArray hist,
const vector<int>& histSize,
const vector<float>& ranges,
const std::vector<int>& histSize,
const std::vector<float>& ranges,
bool accumulate )
{
int i, dims = (int)histSize.size(), rsz = (int)ranges.size(), csz = (int)channels.size();
@@ -1440,7 +1440,7 @@ namespace cv
{
template<typename T, typename BT> static void
calcBackProj_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, const Mat& hist, int dims, const float** _ranges,
const double* _uniranges, float scale, bool uniform )
{
@@ -1605,7 +1605,7 @@ calcBackProj_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
static void
calcBackProj_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcBackProj_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, const Mat& hist, int dims, const float** _ranges,
const double* _uniranges, float scale, bool uniform )
{
@@ -1615,7 +1615,7 @@ calcBackProj_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
int i, x;
uchar* bproj = _ptrs[dims];
int bpstep = _deltas[dims*2 + 1];
vector<size_t> _tab;
std::vector<size_t> _tab;
calcHistLookupTables_8u( hist, SparseMat(), dims, _ranges, _uniranges, uniform, false, _tab );
const size_t* tab = &_tab[0];
@@ -1733,9 +1733,9 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
const float** ranges, double scale, bool uniform )
{
Mat hist = _hist.getMat();
vector<uchar*> ptrs;
vector<int> deltas;
vector<double> uniranges;
std::vector<uchar*> ptrs;
std::vector<int> deltas;
std::vector<double> uniranges;
Size imsize;
int dims = hist.dims == 2 && hist.size[1] == 1 ? 1 : hist.dims;
@@ -1762,7 +1762,7 @@ namespace cv
{
template<typename T, typename BT> static void
calcSparseBackProj_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcSparseBackProj_( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, const SparseMat& hist, int dims, const float** _ranges,
const double* _uniranges, float scale, bool uniform )
{
@@ -1847,7 +1847,7 @@ calcSparseBackProj_( vector<uchar*>& _ptrs, const vector<int>& _deltas,
static void
calcSparseBackProj_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
calcSparseBackProj_8u( std::vector<uchar*>& _ptrs, const std::vector<int>& _deltas,
Size imsize, const SparseMat& hist, int dims, const float** _ranges,
const double* _uniranges, float scale, bool uniform )
{
@@ -1856,7 +1856,7 @@ calcSparseBackProj_8u( vector<uchar*>& _ptrs, const vector<int>& _deltas,
int i, x;
uchar* bproj = _ptrs[dims];
int bpstep = _deltas[dims*2 + 1];
vector<size_t> _tab;
std::vector<size_t> _tab;
int idx[CV_MAX_DIM];
calcHistLookupTables_8u( Mat(), hist, dims, _ranges, _uniranges, uniform, true, _tab );
@@ -1895,9 +1895,9 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
const SparseMat& hist, OutputArray _backProject,
const float** ranges, double scale, bool uniform )
{
vector<uchar*> ptrs;
vector<int> deltas;
vector<double> uniranges;
std::vector<uchar*> ptrs;
std::vector<int> deltas;
std::vector<double> uniranges;
Size imsize;
int dims = hist.dims();
@@ -1924,9 +1924,9 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
}
void cv::calcBackProject( InputArrayOfArrays images, const vector<int>& channels,
void cv::calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
InputArray hist, OutputArray dst,
const vector<float>& ranges,
const std::vector<float>& ranges,
double scale )
{
Mat H0 = hist.getMat(), H;
@@ -2734,7 +2734,7 @@ cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask
int i, dims = cvGetDims( hist->bins, size);
bool uniform = CV_IS_UNIFORM_HIST(hist);
cv::vector<cv::Mat> images(dims);
std::vector<cv::Mat> images(dims);
for( i = 0; i < dims; i++ )
images[i] = cv::cvarrToMat(img[i]);
@@ -2810,7 +2810,7 @@ cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist )
}
}
cv::vector<cv::Mat> images(dims);
std::vector<cv::Mat> images(dims);
for( i = 0; i < dims; i++ )
images[i] = cv::cvarrToMat(img[i]);

View File

@@ -60,7 +60,7 @@ struct hough_cmp_gt
const int* aux;
};
/*
Here image is an input raster;
step is it's step; size characterizes it's ROI;
@@ -72,7 +72,7 @@ Functions return the actual number of found lines.
*/
static void
HoughLinesStandard( const Mat& img, float rho, float theta,
int threshold, vector<Vec2f>& lines, int linesMax )
int threshold, std::vector<Vec2f>& lines, int linesMax )
{
int i, j;
float irho = 1 / rho;
@@ -88,7 +88,7 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
int numrho = cvRound(((width + height) * 2 + 1) / rho);
AutoBuffer<int> _accum((numangle+2) * (numrho+2));
vector<int> _sort_buf;
std::vector<int> _sort_buf;
AutoBuffer<float> _tabSin(numangle);
AutoBuffer<float> _tabCos(numangle);
int *accum = _accum;
@@ -131,7 +131,7 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
cv::sort(_sort_buf, hough_cmp_gt(accum));
// stage 4. store the first min(total,linesMax) lines to the output buffer
linesMax = min(linesMax, (int)_sort_buf.size());
linesMax = std::min(linesMax, (int)_sort_buf.size());
double scale = 1./(numrho+2);
for( i = 0; i < linesMax; i++ )
{
@@ -153,17 +153,17 @@ struct hough_index
hough_index() : value(0), rho(0.f), theta(0.f) {}
hough_index(int _val, float _rho, float _theta)
: value(_val), rho(_rho), theta(_theta) {}
int value;
float rho, theta;
};
static void
HoughLinesSDiv( const Mat& img,
float rho, float theta, int threshold,
int srn, int stn,
vector<Vec2f>& lines, int linesMax )
std::vector<Vec2f>& lines, int linesMax )
{
#define _POINT(row, column)\
(image_src[(row)*step+(column)])
@@ -183,7 +183,7 @@ HoughLinesSDiv( const Mat& img,
int count;
int cmax = 0;
vector<hough_index> lst;
std::vector<hough_index> lst;
CV_Assert( img.type() == CV_8UC1 );
CV_Assert( linesMax > 0 && rho > 0 && theta > 0 );
@@ -202,19 +202,19 @@ HoughLinesSDiv( const Mat& img,
float isrho = 1 / srho;
float istheta = 1 / stheta;
int rn = cvFloor( sqrt( (double)w * w + (double)h * h ) * irho );
int rn = cvFloor( std::sqrt( (double)w * w + (double)h * h ) * irho );
int tn = cvFloor( 2 * CV_PI * itheta );
lst.push_back(hough_index(threshold, -1.f, 0.f));
// Precalculate sin table
vector<float> _sinTable( 5 * tn * stn );
std::vector<float> _sinTable( 5 * tn * stn );
float* sinTable = &_sinTable[0];
for( index = 0; index < 5 * tn * stn; index++ )
sinTable[index] = (float)cos( stheta * index * 0.2f );
vector<uchar> _caccum(rn * tn, (uchar)0);
std::vector<uchar> _caccum(rn * tn, (uchar)0);
uchar* caccum = &_caccum[0];
// Counting all feature pixels
@@ -222,7 +222,7 @@ HoughLinesSDiv( const Mat& img,
for( col = 0; col < w; col++ )
fn += _POINT( row, col ) != 0;
vector<int> _x(fn), _y(fn);
std::vector<int> _x(fn), _y(fn);
int* x = &_x[0], *y = &_y[0];
// Full Hough Transform (it's accumulator update part)
@@ -250,7 +250,7 @@ HoughLinesSDiv( const Mat& img,
/* Update the accumulator */
t = (float) fabs( cvFastArctan( yc, xc ) * d2r );
r = (float) sqrt( (double)xc * xc + (double)yc * yc );
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc );
r0 = r * irho;
ti0 = cvFloor( (t + CV_PI*0.5) * itheta );
@@ -294,7 +294,7 @@ HoughLinesSDiv( const Mat& img,
return;
}
vector<uchar> _buffer(srn * stn + 2);
std::vector<uchar> _buffer(srn * stn + 2);
uchar* buffer = &_buffer[0];
uchar* mcaccum = buffer + 1;
@@ -318,7 +318,7 @@ HoughLinesSDiv( const Mat& img,
// Update the accumulator
t = (float) fabs( cvFastArctan( yc, xc ) * d2r );
r = (float) sqrt( (double)xc * xc + (double)yc * yc ) * isrho;
r = (float) std::sqrt( (double)xc * xc + (double)yc * yc ) * isrho;
ti0 = cvFloor( (t + CV_PI * 0.5) * istheta );
ti2 = (ti * stn - ti0) * 5;
r0 = (float) ri *srn;
@@ -379,7 +379,7 @@ static void
HoughLinesProbabilistic( Mat& image,
float rho, float theta, int threshold,
int lineLength, int lineGap,
vector<Vec4i>& lines, int linesMax )
std::vector<Vec4i>& lines, int linesMax )
{
Point pt;
float irho = 1 / rho;
@@ -395,7 +395,7 @@ HoughLinesProbabilistic( Mat& image,
Mat accum = Mat::zeros( numangle, numrho, CV_32SC1 );
Mat mask( height, width, CV_8UC1 );
vector<float> trigtab(numangle*2);
std::vector<float> trigtab(numangle*2);
for( int n = 0; n < numangle; n++ )
{
@@ -404,7 +404,7 @@ HoughLinesProbabilistic( Mat& image,
}
const float* ttab = &trigtab[0];
uchar* mdata0 = mask.data;
vector<Point> nzloc;
std::vector<Point> nzloc;
// stage 1. collect non-zero image points
for( pt.y = 0; pt.y < height; pt.y++ )
@@ -601,7 +601,7 @@ void cv::HoughLines( InputArray _image, OutputArray _lines,
double srn, double stn )
{
Mat image = _image.getMat();
vector<Vec2f> lines;
std::vector<Vec2f> lines;
if( srn == 0 && stn == 0 )
HoughLinesStandard(image, (float)rho, (float)theta, threshold, lines, INT_MAX);
@@ -617,7 +617,7 @@ void cv::HoughLinesP(InputArray _image, OutputArray _lines,
double minLineLength, double maxGap )
{
Mat image = _image.getMat();
vector<Vec4i> lines;
std::vector<Vec4i> lines;
HoughLinesProbabilistic(image, (float)rho, (float)theta, threshold, cvRound(minLineLength), cvRound(maxGap), lines, INT_MAX);
Mat(lines).copyTo(_lines);
}
@@ -806,7 +806,7 @@ icvHoughCirclesGradient( CvMat* img, float dp, float min_dist,
if( !edges_row[x] || (vx == 0 && vy == 0) )
continue;
float mag = sqrt(vx*vx+vy*vy);
float mag = std::sqrt(vx*vx+vy*vy);
assert( mag >= 1 );
sx = cvRound((vx*idp)*ONE/mag);
sy = cvRound((vy*idp)*ONE/mag);

View File

@@ -1763,7 +1763,7 @@ static int computeResizeAreaTab( int ssize, int dsize, int cn, double scale, Dec
{
double fsx1 = dx * scale;
double fsx2 = fsx1 + scale;
double cellWidth = min(scale, ssize - fsx1);
double cellWidth = std::min(scale, ssize - fsx1);
int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
@@ -1791,7 +1791,7 @@ static int computeResizeAreaTab( int ssize, int dsize, int cn, double scale, Dec
assert( k < ssize*2 );
tab[k].di = dx * cn;
tab[k].si = sx2 * cn;
tab[k++].alpha = (float)(min(min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
tab[k++].alpha = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
}
}
return k;
@@ -4009,7 +4009,7 @@ cvLogPolar( const CvArr* srcarr, CvArr* dstarr,
double xx = bufx.data.fl[x];
double yy = bufy.data.fl[x];
double p = log(sqrt(xx*xx + yy*yy) + 1.)*M;
double p = log(std::sqrt(xx*xx + yy*yy) + 1.)*M;
double a = atan2(yy,xx);
if( a < 0 )
a = 2*CV_PI + a;

View File

@@ -189,7 +189,7 @@ static void fitLine3D_wods( const Point3f * points, int count, float *weights, f
i = evl[0] < evl[1] ? (evl[0] < evl[2] ? 0 : 2) : (evl[1] < evl[2] ? 1 : 2);
v = &evc[i * 3];
n = (float) sqrt( (double)v[0] * v[0] + (double)v[1] * v[1] + (double)v[2] * v[2] );
n = (float) std::sqrt( (double)v[0] * v[0] + (double)v[1] * v[1] + (double)v[2] * v[2] );
n = (float)MAX(n, eps);
line[0] = v[0] / n;
line[1] = v[1] / n;
@@ -240,7 +240,7 @@ static double calcDist3D( const Point3f* points, int count, float *_line, float
p2 = vz * x - vx * z;
p3 = vx * y - vy * x;
dist[j] = (float) sqrt( p1*p1 + p2*p2 + p3*p3 );
dist[j] = (float) std::sqrt( p1*p1 + p2*p2 + p3*p3 );
sum_dist += dist[j];
}
@@ -264,7 +264,7 @@ static void weightL12( float *d, int count, float *w )
for( i = 0; i < count; i++ )
{
w[i] = 1.0f / (float) sqrt( 1 + (double) (d[i] * d[i] * 0.5) );
w[i] = 1.0f / (float) std::sqrt( 1 + (double) (d[i] * d[i] * 0.5) );
}
}

View File

@@ -790,7 +790,7 @@ template<class Op, class VecOp> struct MorphFilter : BaseFilter
ksize = _kernel.size();
CV_Assert( _kernel.type() == CV_8U );
vector<uchar> coeffs; // we do not really the values of non-zero
std::vector<uchar> coeffs; // we do not really the values of non-zero
// kernel elements, just their locations
preprocess2DKernel( _kernel, coords, coeffs );
ptrs.resize( coords.size() );
@@ -839,8 +839,8 @@ template<class Op, class VecOp> struct MorphFilter : BaseFilter
}
}
vector<Point> coords;
vector<uchar*> ptrs;
std::vector<Point> coords;
std::vector<uchar*> ptrs;
VecOp vecOp;
};
@@ -1104,8 +1104,8 @@ public:
void operator () ( const BlockedRange& range ) const
{
int row0 = min(cvRound(range.begin() * src.rows / nStripes), src.rows);
int row1 = min(cvRound(range.end() * src.rows / nStripes), src.rows);
int row0 = std::min(cvRound(range.begin() * src.rows / nStripes), src.rows);
int row1 = std::min(cvRound(range.end() * src.rows / nStripes), src.rows);
/*if(0)
printf("Size = (%d, %d), range[%d,%d), row0 = %d, row1 = %d\n",

View File

@@ -359,7 +359,7 @@ static void fftShift(InputOutputArray _out)
return;
}
vector<Mat> planes;
std::vector<Mat> planes;
split(out, planes);
int xMid = out.cols >> 1;

View File

@@ -91,7 +91,7 @@ static inline Point normalizeAnchor( Point anchor, Size ksize )
return anchor;
}
void preprocess2DKernel( const Mat& kernel, vector<Point>& coords, vector<uchar>& coeffs );
void preprocess2DKernel( const Mat& kernel, std::vector<Point>& coords, std::vector<uchar>& coeffs );
void crossCorr( const Mat& src, const Mat& templ, Mat& dst,
Size corrsize, int ctype,
Point anchor=Point(0,0), double delta=0,

View File

@@ -138,7 +138,7 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
vect[i].x = (float)dx;
vect[i].y = (float)dy;
inv_vect_length[i] = (float)(1./sqrt(dx*dx + dy*dy));
inv_vect_length[i] = (float)(1./std::sqrt(dx*dx + dy*dy));
pt0 = pt;
}
@@ -321,10 +321,10 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
out[0] = px;
out[1] = py;
out[2] = A1 * buf[2];
out[3] = B1 * buf[2];
out[4] = A2 * buf[4];
out[5] = B2 * buf[4];
}
@@ -336,7 +336,7 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
break;
}
}
}
@@ -345,35 +345,35 @@ cv::RotatedRect cv::minAreaRect( InputArray _points )
Mat hull;
Point2f out[3];
RotatedRect box;
convexHull(_points, hull, true, true);
if( hull.depth() != CV_32F )
{
Mat temp;
hull.convertTo(temp, CV_32F);
hull = temp;
}
int n = hull.checkVector(2);
const Point2f* hpoints = (const Point2f*)hull.data;
if( n > 2 )
{
rotatingCalipers( hpoints, n, CALIPERS_MINAREARECT, (float*)out );
box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
box.size.width = (float)sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
box.size.height = (float)sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
box.size.width = (float)std::sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
box.size.height = (float)std::sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
box.angle = (float)atan2( (double)out[1].y, (double)out[1].x );
}
else if( n == 2 )
{
box.center.x = (hpoints[0].x + hpoints[1].x)*0.5f;
box.center.y = (hpoints[0].y + hpoints[1].y)*0.5f;
double dx = hpoints[1].x - hpoints[0].x;
double dx = hpoints[1].x - hpoints[0].x;
double dy = hpoints[1].y - hpoints[0].y;
box.size.width = (float)sqrt(dx*dx + dy*dy);
box.size.width = (float)std::sqrt(dx*dx + dy*dy);
box.size.height = 0;
box.angle = (float)atan2( dy, dx );
}
@@ -382,7 +382,7 @@ cv::RotatedRect cv::minAreaRect( InputArray _points )
if( n == 1 )
box.center = hpoints[0];
}
box.angle = (float)(box.angle*180/CV_PI);
return box;
}

View File

@@ -64,7 +64,7 @@ struct WSQueue
static int
allocWSNodes( vector<WSNode>& storage )
allocWSNodes( std::vector<WSNode>& storage )
{
int sz = (int)storage.size();
int newsz = MAX(128, sz*3/2);
@@ -93,7 +93,7 @@ void cv::watershed( InputArray _src, InputOutputArray _markers )
Mat src = _src.getMat(), dst = _markers.getMat();
Size size = src.size();
vector<WSNode> storage;
std::vector<WSNode> storage;
int free_node = 0, node;
WSQueue q[NQ];
int active_queue;

View File

@@ -284,7 +284,7 @@ void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radiu
radius = MAX(radius, t);
}
radius = (float)(sqrt(radius)*(1 + eps));
radius = (float)(std::sqrt(radius)*(1 + eps));
}
_center = center;
@@ -428,7 +428,7 @@ cv::RotatedRect cv::fitEllipse( InputArray _points )
bd[0] = gfp[3];
bd[1] = gfp[4];
solve( A, b, x, DECOMP_SVD );
// re-fit for parameters A - C with those center coordinates
A = Mat( n, 3, CV_64F, Ad );
b = Mat( n, 1, CV_64F, bd );
@@ -443,7 +443,7 @@ cv::RotatedRect cv::fitEllipse( InputArray _points )
Ad[i * 3 + 2] = (p.x - rp[0]) * (p.y - rp[1]);
}
solve(A, b, x, DECOMP_SVD);
// store angle and radii
rp[4] = -0.5 * atan2(gfp[2], gfp[1] - gfp[0]); // convert from APP angle usage
t = sin(-2.0 * rp[4]);
@@ -453,11 +453,11 @@ cv::RotatedRect cv::fitEllipse( InputArray _points )
t = gfp[1] - gfp[0];
rp[2] = fabs(gfp[0] + gfp[1] - t);
if( rp[2] > min_eps )
rp[2] = sqrt(2.0 / rp[2]);
rp[2] = std::sqrt(2.0 / rp[2]);
rp[3] = fabs(gfp[0] + gfp[1] + t);
if( rp[3] > min_eps )
rp[3] = sqrt(2.0 / rp[3]);
rp[3] = std::sqrt(2.0 / rp[3]);
box.center.x = (float)rp[0] + c.x;
box.center.y = (float)rp[1] + c.y;
box.size.width = (float)(rp[2]*2);
@@ -472,7 +472,7 @@ cv::RotatedRect cv::fitEllipse( InputArray _points )
box.angle += 360;
if( box.angle > 360 )
box.angle -= 360;
return box;
}
@@ -596,7 +596,7 @@ static Rect pointSetBoundingRect( const Mat& points )
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
}
}
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
}
@@ -688,7 +688,7 @@ static Rect maskBoundingRect( const Mat& img )
ymax = i;
}
}
if( xmin >= size.width )
xmin = ymin = 0;
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
@@ -1029,7 +1029,7 @@ cvArcLength( const void *array, CvSlice slice, int is_closed )
}
}
}
return perimeter;
}

View File

@@ -193,7 +193,7 @@ template<typename ST, typename T> struct ColumnSum : public BaseColumnFilter
double scale;
int sumCount;
vector<ST> sum;
std::vector<ST> sum;
};
@@ -335,7 +335,7 @@ template<> struct ColumnSum<int, uchar> : public BaseColumnFilter
double scale;
int sumCount;
vector<int> sum;
std::vector<int> sum;
};
template<> struct ColumnSum<int, short> : public BaseColumnFilter
@@ -472,7 +472,7 @@ template<> struct ColumnSum<int, short> : public BaseColumnFilter
double scale;
int sumCount;
vector<int> sum;
std::vector<int> sum;
};
@@ -607,7 +607,7 @@ template<> struct ColumnSum<int, ushort> : public BaseColumnFilter
double scale;
int sumCount;
vector<int> sum;
std::vector<int> sum;
};
@@ -957,8 +957,8 @@ medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
int STRIPE_SIZE = std::min( _dst.cols, 512/cn );
vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
std::vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
std::vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
HT* h_coarse = alignPtr(&_h_coarse[0], 16);
HT* h_fine = alignPtr(&_h_fine[0], 16);
#if MEDIAN_HAVE_SIMD
@@ -1891,9 +1891,9 @@ bilateralFilter_8u( const Mat& src, Mat& dst, int d,
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
vector<float> _color_weight(cn*256);
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
std::vector<float> _color_weight(cn*256);
std::vector<float> _space_weight(d*d);
std::vector<int> _space_ofs(d*d);
float* color_weight = &_color_weight[0];
float* space_weight = &_space_weight[0];
int* space_ofs = &_space_ofs[0];
@@ -2149,15 +2149,15 @@ bilateralFilter_32f( const Mat& src, Mat& dst, int d,
patchNaNs( temp, insteadNaNValue ); // this replacement of NaNs makes the assumption that depth values are nonnegative
// TODO: make insteadNaNValue avalible in the outside function interface to control the cases breaking the assumption
// allocate lookup tables
vector<float> _space_weight(d*d);
vector<int> _space_ofs(d*d);
std::vector<float> _space_weight(d*d);
std::vector<int> _space_ofs(d*d);
float* space_weight = &_space_weight[0];
int* space_ofs = &_space_ofs[0];
// assign a length which is slightly more than needed
len = (float)(maxValSrc - minValSrc) * cn;
kExpNumBins = kExpNumBinsPerChannel * cn;
vector<float> _expLUT(kExpNumBins+2);
std::vector<float> _expLUT(kExpNumBins+2);
float* expLUT = &_expLUT[0];
scale_index = kExpNumBins/len;

View File

@@ -477,7 +477,7 @@ int Subdiv2D::insert(Point2f pt)
return curr_point;
}
void Subdiv2D::insert(const vector<Point2f>& ptvec)
void Subdiv2D::insert(const std::vector<Point2f>& ptvec)
{
for( size_t i = 0; i < ptvec.size(); i++ )
insert(ptvec[i]);
@@ -706,7 +706,7 @@ int Subdiv2D::findNearest(Point2f pt, Point2f* nearestPt)
return vertex;
}
void Subdiv2D::getEdgeList(vector<Vec4f>& edgeList) const
void Subdiv2D::getEdgeList(std::vector<Vec4f>& edgeList) const
{
edgeList.clear();
@@ -723,11 +723,11 @@ void Subdiv2D::getEdgeList(vector<Vec4f>& edgeList) const
}
}
void Subdiv2D::getTriangleList(vector<Vec6f>& triangleList) const
void Subdiv2D::getTriangleList(std::vector<Vec6f>& triangleList) const
{
triangleList.clear();
int i, total = (int)(qedges.size()*4);
vector<bool> edgemask(total, false);
std::vector<bool> edgemask(total, false);
for( i = 4; i < total; i += 2 )
{
@@ -747,15 +747,15 @@ void Subdiv2D::getTriangleList(vector<Vec6f>& triangleList) const
}
}
void Subdiv2D::getVoronoiFacetList(const vector<int>& idx,
CV_OUT vector<vector<Point2f> >& facetList,
CV_OUT vector<Point2f>& facetCenters)
void Subdiv2D::getVoronoiFacetList(const std::vector<int>& idx,
CV_OUT std::vector<std::vector<Point2f> >& facetList,
CV_OUT std::vector<Point2f>& facetCenters)
{
calcVoronoi();
facetList.clear();
facetCenters.clear();
vector<Point2f> buf;
std::vector<Point2f> buf;
size_t i, total;
if( idx.empty() )

View File

@@ -300,8 +300,8 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
}
templSum2 /= invArea;
templNorm = sqrt(templNorm);
templNorm /= sqrt(invArea); // care of accuracy here
templNorm = std::sqrt(templNorm);
templNorm /= std::sqrt(invArea); // care of accuracy here
q0 = (double*)sqsum.data;
q1 = q0 + templ.cols*cn;
@@ -359,7 +359,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
if( isNormed )
{
t = sqrt(MAX(wndSum2 - wndMean2,0))*templNorm;
t = std::sqrt(MAX(wndSum2 - wndMean2,0))*templNorm;
if( fabs(num) < t )
num /= t;
else if( fabs(num) < t*1.125 )

View File

@@ -415,7 +415,7 @@ static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int pr
double x = p.x, y = p.y;
double beta = 1 + 2*alpha;
double v = x*x + y*y + 1, iv = 1/v;
double u = sqrt(beta*v + alpha*alpha);
double u = std::sqrt(beta*v + alpha*alpha);
double k = (u - alpha)*iv;
double kv = (v*beta/u - (u - alpha)*2)*iv*iv;
@@ -436,8 +436,8 @@ static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int pr
if(J)
{
double fx1 = iR/sqrt(1 - x1*x1);
double fy1 = iR/sqrt(1 - y1*y1);
double fx1 = iR/std::sqrt(1 - x1*x1);
double fy1 = iR/std::sqrt(1 - y1*y1);
*J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k));
}
return Point2f((float)asin(x1), (float)asin(y1));