Remove all using directives for STL namespace and members

Made all STL usages explicit to be able automatically find all usages of
particular class or function.
This commit is contained in:
Andrey Kamaev
2013-02-24 20:14:01 +04:00
parent f783f34e0b
commit 2a6fb2867e
310 changed files with 5744 additions and 5964 deletions

View File

@@ -50,7 +50,7 @@ const int DESCRIPTOR_SIZE = 32;
* blockSize x blockSize patch at given points in an image
*/
static void
HarrisResponses(const Mat& img, vector<KeyPoint>& pts, int blockSize, float harris_k)
HarrisResponses(const Mat& img, std::vector<KeyPoint>& pts, int blockSize, float harris_k)
{
CV_Assert( img.type() == CV_8UC1 && blockSize*blockSize <= 2048 );
@@ -95,7 +95,7 @@ HarrisResponses(const Mat& img, vector<KeyPoint>& pts, int blockSize, float harr
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static float IC_Angle(const Mat& image, const int half_k, Point2f pt,
const vector<int> & u_max)
const std::vector<int> & u_max)
{
int m_01 = 0, m_10 = 0;
@@ -246,7 +246,7 @@ static void computeOrbDescriptor(const KeyPoint& kpt,
}
static void initializeOrbPattern( const Point* pattern0, vector<Point>& pattern, int ntuples, int tupleSize, int poolSize )
static void initializeOrbPattern( const Point* pattern0, std::vector<Point>& pattern, int ntuples, int tupleSize, int poolSize )
{
RNG rng(0x12345678);
int i, k, k1;
@@ -577,7 +577,7 @@ int ORB::descriptorType() const
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void ORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoints) const
void ORB::operator()(InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints) const
{
(*this)(image, mask, keypoints, noArray(), false);
}
@@ -589,11 +589,11 @@ void ORB::operator()(InputArray image, InputArray mask, vector<KeyPoint>& keypoi
* @param scale the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
int halfPatchSize, const vector<int>& umax)
static void computeOrientation(const Mat& image, std::vector<KeyPoint>& keypoints,
int halfPatchSize, const std::vector<int>& umax)
{
// Process each keypoint
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
{
keypoint->angle = IC_Angle(image, halfPatchSize, keypoint->pt, umax);
@@ -606,18 +606,18 @@ static void computeOrientation(const Mat& image, vector<KeyPoint>& keypoints,
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
static void computeKeyPoints(const vector<Mat>& imagePyramid,
const vector<Mat>& maskPyramid,
vector<vector<KeyPoint> >& allKeypoints,
static void computeKeyPoints(const std::vector<Mat>& imagePyramid,
const std::vector<Mat>& maskPyramid,
std::vector<std::vector<KeyPoint> >& allKeypoints,
int nfeatures, int firstLevel, double scaleFactor,
int edgeThreshold, int patchSize, int scoreType )
{
int nlevels = (int)imagePyramid.size();
vector<int> nfeaturesPerLevel(nlevels);
std::vector<int> nfeaturesPerLevel(nlevels);
// fill the extractors and descriptors for the corresponding scales
float factor = (float)(1.0 / scaleFactor);
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));
float ndesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)std::pow((double)factor, (double)nlevels));
int sumFeatures = 0;
for( int level = 0; level < nlevels-1; level++ )
@@ -633,12 +633,12 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
// pre-compute the end of a row in a circular patch
int halfPatchSize = patchSize / 2;
vector<int> umax(halfPatchSize + 2);
std::vector<int> umax(halfPatchSize + 2);
int v, v0, vmax = cvFloor(halfPatchSize * sqrt(2.f) / 2 + 1);
int vmin = cvCeil(halfPatchSize * sqrt(2.f) / 2);
int v, v0, vmax = cvFloor(halfPatchSize * std::sqrt(2.f) / 2 + 1);
int vmin = cvCeil(halfPatchSize * std::sqrt(2.f) / 2);
for (v = 0; v <= vmax; ++v)
umax[v] = cvRound(sqrt((double)halfPatchSize * halfPatchSize - v * v));
umax[v] = cvRound(std::sqrt((double)halfPatchSize * halfPatchSize - v * v));
// Make sure we are symmetric
for (v = halfPatchSize, v0 = 0; v >= vmin; --v)
@@ -656,7 +656,7 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
int featuresNum = nfeaturesPerLevel[level];
allKeypoints[level].reserve(featuresNum*2);
vector<KeyPoint> & keypoints = allKeypoints[level];
std::vector<KeyPoint> & keypoints = allKeypoints[level];
// Detect FAST features, 20 is a good threshold
FastFeatureDetector fd(20, true);
@@ -680,7 +680,7 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
float sf = getScale(level, firstLevel, scaleFactor);
// Set the level of the coordinates
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
{
keypoint->octave = level;
@@ -699,8 +699,8 @@ static void computeKeyPoints(const vector<Mat>& imagePyramid,
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors,
const vector<Point>& pattern, int dsize, int WTA_K)
static void computeDescriptors(const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors,
const std::vector<Point>& pattern, int dsize, int WTA_K)
{
//convert to grayscale if more than one color
CV_Assert(image.type() == CV_8UC1);
@@ -720,7 +720,7 @@ static void computeDescriptors(const Mat& image, vector<KeyPoint>& keypoints, Ma
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
void ORB::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& _keypoints,
OutputArray _descriptors, bool useProvidedKeypoints) const
{
CV_Assert(patchSize >= 2);
@@ -760,7 +760,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
}
// Pre-compute the scale pyramids
vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);
std::vector<Mat> imagePyramid(levelsNum), maskPyramid(levelsNum);
for (int level = 0; level < levelsNum; ++level)
{
float scale = 1/getScale(level, firstLevel, scaleFactor);
@@ -811,7 +811,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
}
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
vector < vector<KeyPoint> > allKeypoints;
std::vector < std::vector<KeyPoint> > allKeypoints;
if( do_keypoints )
{
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
@@ -820,18 +820,18 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
edgeThreshold, patchSize, scoreType);
// make sure we have the right number of keypoints keypoints
/*vector<KeyPoint> temp;
/*std::vector<KeyPoint> temp;
for (int level = 0; level < n_levels; ++level)
{
vector<KeyPoint>& keypoints = all_keypoints[level];
std::vector<KeyPoint>& keypoints = all_keypoints[level];
temp.insert(temp.end(), keypoints.begin(), keypoints.end());
keypoints.clear();
}
KeyPoint::retainBest(temp, n_features_);
for (vector<KeyPoint>::iterator keypoint = temp.begin(),
for (std::vector<KeyPoint>::iterator keypoint = temp.begin(),
keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
all_keypoints[keypoint->octave].push_back(*keypoint);*/
}
@@ -842,7 +842,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
// Cluster the input keypoints depending on the level they were computed at
allKeypoints.resize(levelsNum);
for (vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
for (std::vector<KeyPoint>::iterator keypoint = _keypoints.begin(),
keypointEnd = _keypoints.end(); keypoint != keypointEnd; ++keypoint)
allKeypoints[keypoint->octave].push_back(*keypoint);
@@ -852,16 +852,16 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
if (level == firstLevel)
continue;
vector<KeyPoint> & keypoints = allKeypoints[level];
std::vector<KeyPoint> & keypoints = allKeypoints[level];
float scale = 1/getScale(level, firstLevel, scaleFactor);
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
keypoint->pt *= scale;
}
}
Mat descriptors;
vector<Point> pattern;
std::vector<Point> pattern;
if( do_descriptors )
{
@@ -902,7 +902,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
for (int level = 0; level < levelsNum; ++level)
{
// Get the features and compute their orientation
vector<KeyPoint>& keypoints = allKeypoints[level];
std::vector<KeyPoint>& keypoints = allKeypoints[level];
int nkeypoints = (int)keypoints.size();
// Compute the descriptors
@@ -926,7 +926,7 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
if (level != firstLevel)
{
float scale = getScale(level, firstLevel, scaleFactor);
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
for (std::vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
keypoint->pt *= scale;
}
@@ -935,12 +935,12 @@ void ORB::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _ke
}
}
void ORB::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
void ORB::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask) const
{
(*this)(image, mask, keypoints, noArray(), false);
}
void ORB::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
void ORB::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat& descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}