Remove all using directives for STL namespace and members

Made all STL usages explicit to be able automatically find all usages of
particular class or function.
This commit is contained in:
Andrey Kamaev
2013-02-24 20:14:01 +04:00
parent f783f34e0b
commit 2a6fb2867e
310 changed files with 5744 additions and 5964 deletions

View File

@@ -21,11 +21,9 @@
namespace cv
{
using std::set;
// Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.
template<typename _Tp>
inline void readFileNodeList(const FileNode& fn, vector<_Tp>& result) {
inline void readFileNodeList(const FileNode& fn, std::vector<_Tp>& result) {
if (fn.type() == FileNode::SEQ) {
for (FileNodeIterator it = fn.begin(); it != fn.end();) {
_Tp item;
@@ -37,10 +35,10 @@ inline void readFileNodeList(const FileNode& fn, vector<_Tp>& result) {
// Writes the a list of given items to a cv::FileStorage.
template<typename _Tp>
inline void writeFileNodeList(FileStorage& fs, const string& name,
const vector<_Tp>& items) {
inline void writeFileNodeList(FileStorage& fs, const std::string& name,
const std::vector<_Tp>& items) {
// typedefs
typedef typename vector<_Tp>::const_iterator constVecIterator;
typedef typename std::vector<_Tp>::const_iterator constVecIterator;
// write the elements in item to fs
fs << name << "[";
for (constVecIterator it = items.begin(); it != items.end(); ++it) {
@@ -52,7 +50,7 @@ inline void writeFileNodeList(FileStorage& fs, const string& name,
static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
// make sure the input data is a vector of matrices or vector of vector
if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
std::string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >).";
CV_Error(CV_StsBadArg, error_message);
}
// number of samples
@@ -68,7 +66,7 @@ static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double
for(unsigned int i = 0; i < n; i++) {
// make sure data can be reshaped, throw exception if not!
if(src.getMat(i).total() != d) {
string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total());
std::string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total());
CV_Error(CV_StsBadArg, error_message);
}
// get a hold of the current row
@@ -86,13 +84,13 @@ static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double
// Removes duplicate elements in a given vector.
template<typename _Tp>
inline vector<_Tp> remove_dups(const vector<_Tp>& src) {
typedef typename set<_Tp>::const_iterator constSetIterator;
typedef typename vector<_Tp>::const_iterator constVecIterator;
set<_Tp> set_elems;
inline std::vector<_Tp> remove_dups(const std::vector<_Tp>& src) {
typedef typename std::set<_Tp>::const_iterator constSetIterator;
typedef typename std::vector<_Tp>::const_iterator constVecIterator;
std::set<_Tp> set_elems;
for (constVecIterator it = src.begin(); it != src.end(); ++it)
set_elems.insert(*it);
vector<_Tp> elems;
std::vector<_Tp> elems;
for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
elems.push_back(*it);
return elems;
@@ -106,7 +104,7 @@ class Eigenfaces : public FaceRecognizer
private:
int _num_components;
double _threshold;
vector<Mat> _projections;
std::vector<Mat> _projections;
Mat _labels;
Mat _eigenvectors;
Mat _eigenvalues;
@@ -162,7 +160,7 @@ private:
Mat _eigenvectors;
Mat _eigenvalues;
Mat _mean;
vector<Mat> _projections;
std::vector<Mat> _projections;
Mat _labels;
public:
@@ -220,7 +218,7 @@ private:
int _neighbors;
double _threshold;
vector<Mat> _histograms;
std::vector<Mat> _histograms;
Mat _labels;
// Computes a LBPH model with images in src and
@@ -307,11 +305,11 @@ void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels ) {
return;
}
string error_msg = format("This FaceRecognizer (%s) does not support updating, you have to use FaceRecognizer::train to update it.", this->name().c_str());
std::string error_msg = format("This FaceRecognizer (%s) does not support updating, you have to use FaceRecognizer::train to update it.", this->name().c_str());
CV_Error(CV_StsNotImplemented, error_msg);
}
void FaceRecognizer::save(const string& filename) const {
void FaceRecognizer::save(const std::string& filename) const {
FileStorage fs(filename, FileStorage::WRITE);
if (!fs.isOpened())
CV_Error(CV_StsError, "File can't be opened for writing!");
@@ -319,7 +317,7 @@ void FaceRecognizer::save(const string& filename) const {
fs.release();
}
void FaceRecognizer::load(const string& filename) {
void FaceRecognizer::load(const std::string& filename) {
FileStorage fs(filename, FileStorage::READ);
if (!fs.isOpened())
CV_Error(CV_StsError, "File can't be opened for writing!");
@@ -332,17 +330,17 @@ void FaceRecognizer::load(const string& filename) {
//------------------------------------------------------------------------------
void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
if(_src.total() == 0) {
string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
std::string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(CV_StsBadArg, error_message);
} else if(_local_labels.getMat().type() != CV_32SC1) {
string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());
std::string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());
CV_Error(CV_StsBadArg, error_message);
}
// make sure data has correct size
if(_src.total() > 1) {
for(int i = 1; i < static_cast<int>(_src.total()); i++) {
if(_src.getMat(i-1).total() != _src.getMat(i).total()) {
string error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());
std::string error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());
CV_Error(CV_StsUnsupportedFormat, error_message);
}
}
@@ -356,7 +354,7 @@ void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {
int n = data.rows;
// assert there are as much samples as labels
if(static_cast<int>(labels.total()) != n) {
string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total());
std::string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total());
CV_Error(CV_StsBadArg, error_message);
}
// clear existing model data
@@ -387,11 +385,11 @@ void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const
// make sure the user is passing correct data
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
string error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";
std::string error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";
CV_Error(CV_StsError, error_message);
} else if(_eigenvectors.rows != static_cast<int>(src.total())) {
// check data alignment just for clearer exception messages
string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
std::string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
CV_Error(CV_StsBadArg, error_message);
}
// project into PCA subspace
@@ -441,17 +439,17 @@ void Eigenfaces::save(FileStorage& fs) const {
//------------------------------------------------------------------------------
void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {
if(src.total() == 0) {
string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
std::string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(CV_StsBadArg, error_message);
} else if(_lbls.getMat().type() != CV_32SC1) {
string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());
std::string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());
CV_Error(CV_StsBadArg, error_message);
}
// make sure data has correct size
if(src.total() > 1) {
for(int i = 1; i < static_cast<int>(src.total()); i++) {
if(src.getMat(i-1).total() != src.getMat(i).total()) {
string error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total());
std::string error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total());
CV_Error(CV_StsUnsupportedFormat, error_message);
}
}
@@ -463,17 +461,17 @@ void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {
int N = data.rows;
// make sure labels are passed in correct shape
if(labels.total() != (size_t) N) {
string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total());
std::string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total());
CV_Error(CV_StsBadArg, error_message);
} else if(labels.rows != 1 && labels.cols != 1) {
string error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols);
std::string error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols);
CV_Error(CV_StsBadArg, error_message);
}
// clear existing model data
_labels.release();
_projections.clear();
// safely copy from cv::Mat to std::vector
vector<int> ll;
std::vector<int> ll;
for(unsigned int i = 0; i < labels.total(); i++) {
ll.push_back(labels.at<int>(i));
}
@@ -507,10 +505,10 @@ void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const
// check data alignment just for clearer exception messages
if(_projections.empty()) {
// throw error if no data (or simply return -1?)
string error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?";
std::string error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?";
CV_Error(CV_StsBadArg, error_message);
} else if(src.total() != (size_t) _eigenvectors.rows) {
string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
std::string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());
CV_Error(CV_StsBadArg, error_message);
}
// project into LDA subspace
@@ -642,7 +640,7 @@ static void elbp(InputArray src, OutputArray dst, int radius, int neighbors)
case CV_32FC1: elbp_<float>(src,dst, radius, neighbors); break;
case CV_64FC1: elbp_<double>(src,dst, radius, neighbors); break;
default:
string error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type);
std::string error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type);
CV_Error(CV_StsNotImplemented, error_msg);
break;
}
@@ -770,24 +768,24 @@ void LBPH::update(InputArrayOfArrays _in_src, InputArray _in_labels) {
void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserveData) {
if(_in_src.kind() != _InputArray::STD_VECTOR_MAT && _in_src.kind() != _InputArray::STD_VECTOR_VECTOR) {
string error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";
std::string error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >).";
CV_Error(CV_StsBadArg, error_message);
}
if(_in_src.total() == 0) {
string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
std::string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");
CV_Error(CV_StsUnsupportedFormat, error_message);
} else if(_in_labels.getMat().type() != CV_32SC1) {
string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type());
std::string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type());
CV_Error(CV_StsUnsupportedFormat, error_message);
}
// get the vector of matrices
vector<Mat> src;
std::vector<Mat> src;
_in_src.getMatVector(src);
// get the label matrix
Mat labels = _in_labels.getMat();
// check if data is well- aligned
if(labels.total() != src.size()) {
string error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total());
std::string error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total());
CV_Error(CV_StsBadArg, error_message);
}
// if this model should be trained without preserving old data, delete old model data
@@ -818,7 +816,7 @@ void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserv
void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {
if(_histograms.empty()) {
// throw error if no data (or simply return -1?)
string error_message = "This LBPH model is not computed yet. Did you call the train method?";
std::string error_message = "This LBPH model is not computed yet. Did you call the train method?";
CV_Error(CV_StsBadArg, error_message);
}
Mat src = _src.getMat();