Fixed several merge issues
This commit is contained in:
parent
74b83cfce5
commit
2a350b11dd
@ -46,12 +46,3 @@
|
||||
#endif
|
||||
|
||||
#include "opencv2/calib3d.hpp"
|
||||
// Performs a fast check if a chessboard is in the input image. This is a workaround to
|
||||
// a problem of cvFindChessboardCorners being slow on images with no chessboard.
|
||||
// This method works using a binary image as input
|
||||
// - src: input binary image
|
||||
// - size: chessboard size
|
||||
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
|
||||
// 0 if there is no chessboard, -1 in case of error
|
||||
CVAPI(int) cvCheckChessboardBinary(IplImage* src, CvSize size);
|
||||
|
||||
|
@ -202,6 +202,8 @@ static void icvRemoveQuadFromGroup(CvCBQuad **quads, int count, CvCBQuad *q0);
|
||||
|
||||
static int icvCheckBoardMonotony( CvPoint2D32f* corners, CvSize pattern_size );
|
||||
|
||||
int cvCheckChessboardBinary(IplImage* src, CvSize size);
|
||||
|
||||
/***************************************************************************************************/
|
||||
//COMPUTE INTENSITY HISTOGRAM OF INPUT IMAGE
|
||||
static int icvGetIntensityHistogram( unsigned char* pucImage, int iSizeCols, int iSizeRows, std::vector<int>& piHist );
|
||||
@ -515,7 +517,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
||||
//perform new method for checking chessboard using a binary image.
|
||||
//image is binarised using a threshold dependent on the image histogram
|
||||
icvBinarizationHistogramBased( (unsigned char*) cImgSeg->imageData, cImgSeg->width, cImgSeg->height );
|
||||
check_chessboard_result = cvCheckChessboardBinary(cImgSeg, pattern_size);
|
||||
int check_chessboard_result = cvCheckChessboardBinary(cImgSeg, pattern_size);
|
||||
if(check_chessboard_result <= 0) //fall back to the old method
|
||||
{
|
||||
IplImage _img;
|
||||
@ -528,16 +530,6 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
||||
}
|
||||
}
|
||||
|
||||
// empiric threshold level
|
||||
// thresholding performed here and not inside the cycle to save processing time
|
||||
int thresh_level;
|
||||
if ( !(flags & CV_CALIB_CB_ADAPTIVE_THRESH) )
|
||||
{
|
||||
double mean = cvAvg( img ).val[0];
|
||||
thresh_level = cvRound( mean - 10 );
|
||||
thresh_level = MAX( thresh_level, 10 );
|
||||
cvThreshold( img, thresh_img, thresh_level, 255, CV_THRESH_BINARY );
|
||||
}
|
||||
// Try our standard "1" dilation, but if the pattern is not found, iterate the whole procedure with higher dilations.
|
||||
// This is necessary because some squares simply do not separate properly with a single dilation. However,
|
||||
// we want to use the minimum number of dilations possible since dilations cause the squares to become smaller,
|
||||
@ -550,6 +542,8 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
||||
cvFree(&quads);
|
||||
cvFree(&corners);
|
||||
|
||||
int max_quad_buf_size = 0;
|
||||
|
||||
//USE BINARY IMAGE COMPUTED USING icvBinarizationHistogramBased METHOD
|
||||
cvDilate( thresh_img_new, thresh_img_new, 0, 1 );
|
||||
|
||||
@ -586,8 +580,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
||||
// order the quad corners globally
|
||||
// maybe delete or add some
|
||||
PRINTF("Starting ordering of inner quads\n");
|
||||
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners,
|
||||
pattern_size, storage );
|
||||
count = icvOrderFoundConnectedQuads(count, quad_group, &quad_count, &quads, &corners, pattern_size, max_quad_buf_size, storage );
|
||||
PRINTF("Orig count: %d After ordering: %d\n", icount, count);
|
||||
|
||||
if (count == 0)
|
||||
@ -637,6 +630,16 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
||||
// revert to old, slower, method if detection failed
|
||||
if (!found)
|
||||
{
|
||||
// empiric threshold level
|
||||
// thresholding performed here and not inside the cycle to save processing time
|
||||
int thresh_level;
|
||||
if ( !(flags & CV_CALIB_CB_ADAPTIVE_THRESH) )
|
||||
{
|
||||
double mean = cvAvg( img ).val[0];
|
||||
thresh_level = cvRound( mean - 10 );
|
||||
thresh_level = MAX( thresh_level, 10 );
|
||||
cvThreshold( img, thresh_img, thresh_level, 255, CV_THRESH_BINARY );
|
||||
}
|
||||
for( k = 0; k < 6; k++ )
|
||||
{
|
||||
int max_quad_buf_size = 0;
|
||||
@ -669,7 +672,7 @@ int cvFindChessboardCorners( const void* arr, CvSize pattern_size,
|
||||
}
|
||||
|
||||
#ifdef DEBUG_CHESSBOARD
|
||||
cvCvtColor(thresh_img,dbg_img,CV_GRAY2BGR);
|
||||
cvCvtColor(thresh_img,dbg_img,CV_GRAY2BGR);
|
||||
#endif
|
||||
|
||||
// So we can find rectangles that go to the edge, we draw a white line around the image edge.
|
||||
|
Loading…
x
Reference in New Issue
Block a user