Merge pull request #1299 from jet47:gpu-cuda-rename

This commit is contained in:
Alexander Smorkalov
2013-09-23 10:31:46 +04:00
committed by OpenCV Buildbot
601 changed files with 8873 additions and 9711 deletions

View File

@@ -16,17 +16,17 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
ocv_include_directories("${OpenCV_SOURCE_DIR}/include")#for opencv.hpp
ocv_include_modules(${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
if(HAVE_opencv_gpuoptflow)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/gpuoptflow/include")
if(HAVE_opencv_cudaoptflow)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/cudaoptflow/include")
endif()
if(HAVE_opencv_gpuimgproc)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/gpuimgproc/include")
if(HAVE_opencv_cudaimgproc)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/cudaimgproc/include")
endif()
if(HAVE_opencv_gpuarithm)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/gpuarithm/include")
if(HAVE_opencv_cudaarithm)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/cudaarithm/include")
endif()
if(HAVE_opencv_gpufilters)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/gpufilters/include")
if(HAVE_opencv_cudafilters)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/cudafilters/include")
endif()
if(CMAKE_COMPILER_IS_GNUCXX AND NOT ENABLE_NOISY_WARNINGS)
@@ -53,7 +53,7 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
target_link_libraries(${the_target} ${OPENCV_LINKER_LIBS} ${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
if("${srcs}" MATCHES "gpu/")
target_link_libraries(${the_target} opencv_gpuarithm opencv_gpufilters)
target_link_libraries(${the_target} opencv_cudaarithm opencv_cudafilters)
endif()
set_target_properties(${the_target} PROPERTIES
@@ -79,7 +79,7 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
ocv_list_filterout(cpp_samples Qt_sample)
endif()
if(NOT HAVE_opencv_gpuarithm OR NOT HAVE_opencv_gpufilters)
if(NOT HAVE_opencv_cudaarithm OR NOT HAVE_opencv_cudafilters)
ocv_list_filterout(cpp_samples "/gpu/")
endif()

View File

@@ -357,7 +357,7 @@ int main(int argc, char* argv[])
if (features_type == "surf")
{
#ifdef HAVE_OPENCV_NONFREE
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
finder = makePtr<SurfFeaturesFinderGpu>();
else
#endif
@@ -552,8 +552,8 @@ int main(int argc, char* argv[])
// Warp images and their masks
Ptr<WarperCreator> warper_creator;
#ifdef HAVE_OPENCV_GPUWARPING
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
#ifdef HAVE_OPENCV_CUDAWARPING
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
{
if (warp_type == "plane")
warper_creator = makePtr<cv::PlaneWarperGpu>();
@@ -635,8 +635,8 @@ int main(int argc, char* argv[])
seam_finder = makePtr<detail::VoronoiSeamFinder>();
else if (seam_find_type == "gc_color")
{
#ifdef HAVE_OPENCV_GPU
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
#ifdef HAVE_OPENCV_CUDA
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
@@ -644,8 +644,8 @@ int main(int argc, char* argv[])
}
else if (seam_find_type == "gc_colorgrad")
{
#ifdef HAVE_OPENCV_GPU
if (try_gpu && gpu::getCudaEnabledDeviceCount() > 0)
#ifdef HAVE_OPENCV_CUDA
if (try_gpu && cuda::getCudaEnabledDeviceCount() > 0)
seam_finder = makePtr<detail::GraphCutSeamFinderGpu>(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif

View File

@@ -6,9 +6,9 @@
#include <opencv2/imgproc.hpp>// Image processing methods for the CPU
#include <opencv2/highgui.hpp>// Read images
// GPU structures and methods
#include <opencv2/gpuarithm.hpp>
#include <opencv2/gpufilters.hpp>
// CUDA structures and methods
#include <opencv2/cudaarithm.hpp>
#include <opencv2/cudafilters.hpp>
using namespace std;
using namespace cv;
@@ -16,41 +16,41 @@ using namespace cv;
double getPSNR(const Mat& I1, const Mat& I2); // CPU versions
Scalar getMSSIM( const Mat& I1, const Mat& I2);
double getPSNR_GPU(const Mat& I1, const Mat& I2); // Basic GPU versions
Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);
double getPSNR_CUDA(const Mat& I1, const Mat& I2); // Basic CUDA versions
Scalar getMSSIM_CUDA( const Mat& I1, const Mat& I2);
struct BufferPSNR // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2;
struct BufferPSNR // Optimized CUDA versions
{ // Data allocations are very expensive on CUDA. Use a buffer to solve: allocate once reuse later.
cuda::GpuMat gI1, gI2, gs, t1,t2;
gpu::GpuMat buf;
cuda::GpuMat buf;
};
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);
double getPSNR_CUDA_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);
struct BufferMSSIM // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2;
struct BufferMSSIM // Optimized CUDA versions
{ // Data allocations are very expensive on CUDA. Use a buffer to solve: allocate once reuse later.
cuda::GpuMat gI1, gI2, gs, t1,t2;
gpu::GpuMat I1_2, I2_2, I1_I2;
vector<gpu::GpuMat> vI1, vI2;
cuda::GpuMat I1_2, I2_2, I1_I2;
vector<cuda::GpuMat> vI1, vI2;
gpu::GpuMat mu1, mu2;
gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
cuda::GpuMat mu1, mu2;
cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
gpu::GpuMat sigma1_2, sigma2_2, sigma12;
gpu::GpuMat t3;
cuda::GpuMat sigma1_2, sigma2_2, sigma12;
cuda::GpuMat t3;
gpu::GpuMat ssim_map;
cuda::GpuMat ssim_map;
gpu::GpuMat buf;
cuda::GpuMat buf;
};
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);
Scalar getMSSIM_CUDA_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);
static void help()
{
cout
<< "\n--------------------------------------------------------------------------" << endl
<< "This program shows how to port your CPU code to GPU or write that from scratch." << endl
<< "This program shows how to port your CPU code to CUDA or write that from scratch." << endl
<< "You can see the performance improvement for the similarity check methods (PSNR and SSIM)." << endl
<< "Usage:" << endl
<< "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
@@ -90,33 +90,33 @@ int main(int, char *argv[])
cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of: " << result << endl;
//------------------------------- PSNR GPU ----------------------------------------------------
//------------------------------- PSNR CUDA ----------------------------------------------------
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
result = getPSNR_GPU(I1,I2);
result = getPSNR_CUDA(I1,I2);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
cout << "Time of PSNR CUDA (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of: " << result << endl;
//------------------------------- PSNR GPU Optimized--------------------------------------------
//------------------------------- PSNR CUDA Optimized--------------------------------------------
time = (double)getTickCount(); // Initial call
result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
result = getPSNR_CUDA_optimized(I1, I2, bufferPSNR);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
cout << "Initial call GPU optimized: " << time <<" milliseconds."
cout << "Initial call CUDA optimized: " << time <<" milliseconds."
<< " With result of: " << result << endl;
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
result = getPSNR_CUDA_optimized(I1, I2, bufferPSNR);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): " << time
cout << "Time of PSNR CUDA OPTIMIZED ( / " << TIMES << " runs): " << time
<< " milliseconds." << " With result of: " << result << endl << endl;
@@ -133,34 +133,34 @@ int main(int, char *argv[])
cout << "Time of MSSIM CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
//------------------------------- SSIM GPU -----------------------------------------------------
//------------------------------- SSIM CUDA -----------------------------------------------------
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
x = getMSSIM_GPU(I1,I2);
x = getMSSIM_CUDA(I1,I2);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of MSSIM GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
cout << "Time of MSSIM CUDA (averaged for " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
//------------------------------- SSIM GPU Optimized--------------------------------------------
//------------------------------- SSIM CUDA Optimized--------------------------------------------
time = (double)getTickCount();
x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
x = getMSSIM_CUDA_optimized(I1,I2, bufferMSSIM);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
cout << "Time of MSSIM GPU Initial Call " << time << " milliseconds."
cout << "Time of MSSIM CUDA Initial Call " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl;
time = (double)getTickCount();
for (int i = 0; i < TIMES; ++i)
x = getMSSIM_GPU_optimized(I1,I2, bufferMSSIM);
x = getMSSIM_CUDA_optimized(I1,I2, bufferMSSIM);
time = 1000*((double)getTickCount() - time)/getTickFrequency();
time /= TIMES;
cout << "Time of MSSIM GPU OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
cout << "Time of MSSIM CUDA OPTIMIZED ( / " << TIMES << " runs): " << time << " milliseconds."
<< " With result of B" << x.val[0] << " G" << x.val[1] << " R" << x.val[2] << endl << endl;
return 0;
}
@@ -189,7 +189,7 @@ double getPSNR(const Mat& I1, const Mat& I2)
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
double getPSNR_CUDA_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
{
b.gI1.upload(I1);
b.gI2.upload(I2);
@@ -197,10 +197,10 @@ double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
b.gI1.convertTo(b.t1, CV_32F);
b.gI2.convertTo(b.t2, CV_32F);
gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
gpu::multiply(b.gs, b.gs, b.gs);
cuda::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
cuda::multiply(b.gs, b.gs, b.gs);
double sse = gpu::sum(b.gs, b.buf)[0];
double sse = cuda::sum(b.gs, b.buf)[0];
if( sse <= 1e-10) // for small values return zero
return 0;
@@ -212,9 +212,9 @@ double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
}
}
double getPSNR_GPU(const Mat& I1, const Mat& I2)
double getPSNR_CUDA(const Mat& I1, const Mat& I2)
{
gpu::GpuMat gI1, gI2, gs, t1,t2;
cuda::GpuMat gI1, gI2, gs, t1,t2;
gI1.upload(I1);
gI2.upload(I2);
@@ -222,10 +222,10 @@ double getPSNR_GPU(const Mat& I1, const Mat& I2)
gI1.convertTo(t1, CV_32F);
gI2.convertTo(t2, CV_32F);
gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
gpu::multiply(gs, gs, gs);
cuda::absdiff(t1.reshape(1), t2.reshape(1), gs);
cuda::multiply(gs, gs, gs);
Scalar s = gpu::sum(gs);
Scalar s = cuda::sum(gs);
double sse = s.val[0] + s.val[1] + s.val[2];
if( sse <= 1e-10) // for small values return zero
@@ -291,11 +291,11 @@ Scalar getMSSIM( const Mat& i1, const Mat& i2)
return mssim;
}
Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
Scalar getMSSIM_CUDA( const Mat& i1, const Mat& i2)
{
const float C1 = 6.5025f, C2 = 58.5225f;
/***************************** INITS **********************************/
gpu::GpuMat gI1, gI2, gs1, tmp1,tmp2;
cuda::GpuMat gI1, gI2, gs1, tmp1,tmp2;
gI1.upload(i1);
gI2.upload(i2);
@@ -303,64 +303,64 @@ Scalar getMSSIM_GPU( const Mat& i1, const Mat& i2)
gI1.convertTo(tmp1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
gI2.convertTo(tmp2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
vector<gpu::GpuMat> vI1, vI2;
gpu::split(tmp1, vI1);
gpu::split(tmp2, vI2);
vector<cuda::GpuMat> vI1, vI2;
cuda::split(tmp1, vI1);
cuda::split(tmp2, vI2);
Scalar mssim;
Ptr<gpu::Filter> gauss = gpu::createGaussianFilter(vI2[0].type(), -1, Size(11, 11), 1.5);
Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(vI2[0].type(), -1, Size(11, 11), 1.5);
for( int i = 0; i < gI1.channels(); ++i )
{
gpu::GpuMat I2_2, I1_2, I1_I2;
cuda::GpuMat I2_2, I1_2, I1_I2;
gpu::multiply(vI2[i], vI2[i], I2_2); // I2^2
gpu::multiply(vI1[i], vI1[i], I1_2); // I1^2
gpu::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2
cuda::multiply(vI2[i], vI2[i], I2_2); // I2^2
cuda::multiply(vI1[i], vI1[i], I1_2); // I1^2
cuda::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2
/*************************** END INITS **********************************/
gpu::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
cuda::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
gauss->apply(vI1[i], mu1);
gauss->apply(vI2[i], mu2);
gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
gpu::multiply(mu1, mu1, mu1_2);
gpu::multiply(mu2, mu2, mu2_2);
gpu::multiply(mu1, mu2, mu1_mu2);
cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
cuda::multiply(mu1, mu1, mu1_2);
cuda::multiply(mu2, mu2, mu2_2);
cuda::multiply(mu1, mu2, mu1_mu2);
gpu::GpuMat sigma1_2, sigma2_2, sigma12;
cuda::GpuMat sigma1_2, sigma2_2, sigma12;
gauss->apply(I1_2, sigma1_2);
gpu::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
cuda::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
gauss->apply(I2_2, sigma2_2);
gpu::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
cuda::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
gauss->apply(I1_I2, sigma12);
gpu::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
cuda::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
///////////////////////////////// FORMULA ////////////////////////////////
gpu::GpuMat t1, t2, t3;
cuda::GpuMat t1, t2, t3;
mu1_mu2.convertTo(t1, -1, 2, C1); // t1 = 2 * mu1_mu2 + C1;
sigma12.convertTo(t2, -1, 2, C2); // t2 = 2 * sigma12 + C2;
gpu::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
cuda::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
gpu::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1); // t1 = mu1_2 + mu2_2 + C1;
gpu::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
gpu::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
cuda::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1); // t1 = mu1_2 + mu2_2 + C1;
cuda::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
cuda::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
gpu::GpuMat ssim_map;
gpu::divide(t3, t1, ssim_map); // ssim_map = t3./t1;
cuda::GpuMat ssim_map;
cuda::divide(t3, t1, ssim_map); // ssim_map = t3./t1;
Scalar s = gpu::sum(ssim_map);
Scalar s = cuda::sum(ssim_map);
mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);
}
return mssim;
}
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
Scalar getMSSIM_CUDA_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
{
const float C1 = 6.5025f, C2 = 58.5225f;
/***************************** INITS **********************************/
@@ -368,63 +368,63 @@ Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
b.gI1.upload(i1);
b.gI2.upload(i2);
gpu::Stream stream;
cuda::Stream stream;
b.gI1.convertTo(b.t1, CV_32F, stream);
b.gI2.convertTo(b.t2, CV_32F, stream);
gpu::split(b.t1, b.vI1, stream);
gpu::split(b.t2, b.vI2, stream);
cuda::split(b.t1, b.vI1, stream);
cuda::split(b.t2, b.vI2, stream);
Scalar mssim;
Ptr<gpu::Filter> gauss = gpu::createGaussianFilter(b.vI1[0].type(), -1, Size(11, 11), 1.5);
Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(b.vI1[0].type(), -1, Size(11, 11), 1.5);
for( int i = 0; i < b.gI1.channels(); ++i )
{
gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream); // I2^2
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream); // I1^2
gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream); // I1 * I2
cuda::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream); // I2^2
cuda::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream); // I1^2
cuda::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream); // I1 * I2
gauss->apply(b.vI1[i], b.mu1, stream);
gauss->apply(b.vI2[i], b.mu2, stream);
gpu::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
gpu::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
cuda::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
cuda::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
cuda::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
gauss->apply(b.I1_2, b.sigma1_2, stream);
gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, gpu::GpuMat(), -1, stream);
cuda::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, cuda::GpuMat(), -1, stream);
//b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation
gauss->apply(b.I2_2, b.sigma2_2, stream);
gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, gpu::GpuMat(), -1, stream);
cuda::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, cuda::GpuMat(), -1, stream);
//b.sigma2_2 -= b.mu2_2;
gauss->apply(b.I1_I2, b.sigma12, stream);
gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, gpu::GpuMat(), -1, stream);
cuda::subtract(b.sigma12, b.mu1_mu2, b.sigma12, cuda::GpuMat(), -1, stream);
//b.sigma12 -= b.mu1_mu2;
//here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
gpu::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
gpu::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -12, stream);
cuda::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
cuda::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -12, stream);
gpu::multiply(b.t1, b.t2, b.t3, 1, -1, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
cuda::multiply(b.t1, b.t2, b.t3, 1, -1, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
gpu::add(b.mu1_2, b.mu2_2, b.t1, gpu::GpuMat(), -1, stream);
gpu::add(b.t1, C1, b.t1, gpu::GpuMat(), -1, stream);
cuda::add(b.mu1_2, b.mu2_2, b.t1, cuda::GpuMat(), -1, stream);
cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
gpu::add(b.sigma1_2, b.sigma2_2, b.t2, gpu::GpuMat(), -1, stream);
gpu::add(b.t2, C2, b.t2, gpu::GpuMat(), -1, stream);
cuda::add(b.sigma1_2, b.sigma2_2, b.t2, cuda::GpuMat(), -1, stream);
cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -1, stream);
gpu::multiply(b.t1, b.t2, b.t1, 1, -1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
gpu::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream); // ssim_map = t3./t1;
cuda::multiply(b.t1, b.t2, b.t1, 1, -1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
cuda::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream); // ssim_map = t3./t1;
stream.waitForCompletion();
Scalar s = gpu::sum(b.ssim_map, b.buf);
Scalar s = cuda::sum(b.ssim_map, b.buf);
mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
}

View File

@@ -126,7 +126,7 @@ void printHelp()
" --mosaic-stdev=<float_number>\n"
" Consistent mosaicing stdev threshold. The default is 10.0.\n\n"
" -mi, --motion-inpaint=(yes|no)\n"
" Do motion inpainting (requires GPU support). The default is no.\n"
" Do motion inpainting (requires CUDA support). The default is no.\n"
" --mi-dist-thresh=<float_number>\n"
" Estimated flow distance threshold for motion inpainting. The default is 5.0.\n\n"
" -ci, --color-inpaint=(no|average|ns|telea)\n"
@@ -160,7 +160,7 @@ void printHelp()
" -lm2, --load-motions2=(<file_path>|no)\n"
" Load motions for wobble suppression from file. The default is no.\n\n"
" -gpu=(yes|no)\n"
" Use GPU optimization whenever possible. The default is no.\n\n"
" Use CUDA optimization whenever possible. The default is no.\n\n"
" -o, --output=(no|<file_path>)\n"
" Set output file path explicitely. The default is stabilized.avi.\n"
" --fps=(<float_number>|auto)\n"
@@ -216,7 +216,7 @@ public:
outlierRejector = tblor;
}
#if defined(HAVE_OPENCV_GPUIMGPROC) && defined(HAVE_OPENCV_GPU) && defined(HAVE_OPENCV_GPUOPTFLOW)
#if defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDA) && defined(HAVE_OPENCV_CUDAOPTFLOW)
if (gpu)
{
Ptr<KeypointBasedMotionEstimatorGpu> kbest = makePtr<KeypointBasedMotionEstimatorGpu>(est);
@@ -257,7 +257,7 @@ public:
outlierRejector = tblor;
}
#if defined(HAVE_OPENCV_GPUIMGPROC) && defined(HAVE_OPENCV_GPU) && defined(HAVE_OPENCV_GPUOPTFLOW)
#if defined(HAVE_OPENCV_CUDAIMGPROC) && defined(HAVE_OPENCV_CUDA) && defined(HAVE_OPENCV_CUDAOPTFLOW)
if (gpu)
{
Ptr<KeypointBasedMotionEstimatorGpu> kbest = makePtr<KeypointBasedMotionEstimatorGpu>(est);
@@ -342,12 +342,12 @@ int main(int argc, const char **argv)
return 0;
}
#ifdef HAVE_OPENCV_GPU
#ifdef HAVE_OPENCV_CUDA
if (arg("gpu") == "yes")
{
cout << "initializing GPU..."; cout.flush();
Mat hostTmp = Mat::zeros(1, 1, CV_32F);
gpu::GpuMat deviceTmp;
cuda::GpuMat deviceTmp;
deviceTmp.upload(hostTmp);
cout << endl;
}
@@ -420,10 +420,10 @@ int main(int argc, const char **argv)
{
Ptr<MoreAccurateMotionWobbleSuppressorBase> ws = makePtr<MoreAccurateMotionWobbleSuppressor>();
if (arg("gpu") == "yes")
#ifdef HAVE_OPENCV_GPU
#ifdef HAVE_OPENCV_CUDA
ws = makePtr<MoreAccurateMotionWobbleSuppressorGpu>();
#else
throw runtime_error("OpenCV is built without GPU support");
throw runtime_error("OpenCV is built without CUDA support");
#endif
ws->setMotionEstimator(wsMotionEstBuilder->build());