fixed doc builder complains and the test failures

This commit is contained in:
Vadim Pisarevsky 2014-08-12 00:03:40 +04:00
parent 31df47b6ea
commit 27d2d3cbac
8 changed files with 4 additions and 190 deletions

View File

@ -3056,8 +3056,6 @@ Here is example of SIFT use in your application via Algorithm interface: ::
...
initModule_nonfree(); // to load SURF/SIFT etc.
Ptr<Feature2D> sift = SIFT::create();
FileStorage fs("sift_params.xml", FileStorage::READ);
@ -3068,7 +3066,7 @@ Here is example of SIFT use in your application via Algorithm interface: ::
}
else // else modify the parameters and store them; user can later edit the file to use different parameters
{
sift->set("contrastThreshold", 0.01f); // lower the contrast threshold, compared to the default value
sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
{
WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
@ -3078,7 +3076,7 @@ Here is example of SIFT use in your application via Algorithm interface: ::
Mat image = imread("myimage.png", 0), descriptors;
vector<KeyPoint> keypoints;
(*sift)(image, noArray(), keypoints, descriptors);
sift->detectAndCompute(image, noArray(), keypoints, descriptors);
Algorithm::name
---------------

View File

@ -84,13 +84,6 @@ Creates a descriptor extractor by name.
The current implementation supports the following types of a descriptor extractor:
* ``"SIFT"`` -- :ocv:class:`SIFT`
* ``"SURF"`` -- :ocv:class:`SURF`
* ``"BRIEF"`` -- :ocv:class:`BriefDescriptorExtractor`
* ``"BRISK"`` -- :ocv:class:`BRISK`
* ``"ORB"`` -- :ocv:class:`ORB`
* ``"FREAK"`` -- :ocv:class:`FREAK`
A combined format is also supported: descriptor extractor adapter name ( ``"Opponent"`` --
:ocv:class:`OpponentColorDescriptorExtractor` ) + descriptor extractor name (see above),
for example: ``"OpponentSIFT"`` .

View File

@ -72,20 +72,13 @@ Creates a feature detector by its name.
The following detector types are supported:
* ``"FAST"`` -- :ocv:class:`FastFeatureDetector`
* ``"STAR"`` -- :ocv:class:`StarFeatureDetector`
* ``"ORB"`` -- :ocv:class:`ORB`
* ``"BRISK"`` -- :ocv:class:`BRISK`
* ``"MSER"`` -- :ocv:class:`MSER`
* ``"GFTT"`` -- :ocv:class:`GoodFeaturesToTrackDetector`
* ``"HARRIS"`` -- :ocv:class:`GoodFeaturesToTrackDetector` with Harris detector enabled
* ``"Dense"`` -- :ocv:class:`DenseFeatureDetector`
* ``"SimpleBlob"`` -- :ocv:class:`SimpleBlobDetector`
Also a combined format is supported: feature detector adapter name ( ``"Grid"`` --
:ocv:class:`GridAdaptedFeatureDetector`, ``"Pyramid"`` --
:ocv:class:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
for example: ``"GridFAST"``, ``"PyramidSTAR"`` .
FastFeatureDetector
-------------------
.. ocv:class:: FastFeatureDetector : public FeatureDetector

View File

@ -327,28 +327,6 @@ TEST( Features2d_DescriptorExtractor_ORB, regression )
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_FREAK, regression )
{
// TODO adjust the parameters below
CV_DescriptorExtractorTest<Hamming> test( "descriptor-freak", (CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
DescriptorExtractor::create("FREAK") );
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_BRIEF, regression )
{
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brief", 1,
DescriptorExtractor::create("BRIEF") );
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_OpponentBRIEF, regression )
{
CV_DescriptorExtractorTest<Hamming> test( "descriptor-opponent-brief", 1,
DescriptorExtractor::create("OpponentBRIEF") );
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_KAZE, regression )
{
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-kaze", 0.03f,

View File

@ -277,12 +277,6 @@ TEST( Features2d_Detector_MSER, DISABLED_regression )
test.safe_run();
}
TEST( Features2d_Detector_STAR, regression )
{
CV_FeatureDetectorTest test( "detector-star", FeatureDetector::create("STAR") );
test.safe_run();
}
TEST( Features2d_Detector_ORB, regression )
{
CV_FeatureDetectorTest test( "detector-orb", FeatureDetector::create("ORB") );
@ -300,15 +294,3 @@ TEST( Features2d_Detector_AKAZE, regression )
CV_FeatureDetectorTest test( "detector-akaze", FeatureDetector::create("AKAZE") );
test.safe_run();
}
TEST( Features2d_Detector_GridFAST, regression )
{
CV_FeatureDetectorTest test( "detector-grid-fast", FeatureDetector::create("GridFAST") );
test.safe_run();
}
TEST( Features2d_Detector_PyramidFAST, regression )
{
CV_FeatureDetectorTest test( "detector-pyramid-fast", FeatureDetector::create("PyramidFAST") );
test.safe_run();
}

View File

@ -155,18 +155,6 @@ TEST(Features2d_Detector_Keypoints_ORB, validation)
test.safe_run();
}
TEST(Features2d_Detector_Keypoints_Star, validation)
{
CV_FeatureDetectorKeypointsTest test(Algorithm::create<FeatureDetector>("Feature2D.STAR"));
test.safe_run();
}
TEST(Features2d_Detector_Keypoints_Dense, validation)
{
CV_FeatureDetectorKeypointsTest test(Algorithm::create<FeatureDetector>("Feature2D.Dense"));
test.safe_run();
}
TEST(Features2d_Detector_Keypoints_KAZE, validation)
{
CV_FeatureDetectorKeypointsTest test(Algorithm::create<FeatureDetector>("Feature2D.KAZE"));

View File

@ -390,124 +390,6 @@ private:
Ptr<DescriptorExtractor> wrapped;
};
class CV_EXPORTS_AS(GenericDescriptorMatcher) javaGenericDescriptorMatcher
{
public:
CV_WRAP void add( const std::vector<Mat>& images,
std::vector<std::vector<KeyPoint> >& keypoints )
{ return wrapped->add(images, keypoints); }
CV_WRAP const std::vector<Mat>& getTrainImages() const
{ return wrapped->getTrainImages(); }
CV_WRAP const std::vector<std::vector<KeyPoint> >& getTrainKeypoints() const
{ return wrapped->getTrainKeypoints(); }
CV_WRAP void clear()
{ return wrapped->clear(); }
CV_WRAP bool isMaskSupported()
{ return wrapped->isMaskSupported(); }
CV_WRAP void train()
{ return wrapped->train(); }
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints ) const
{ return wrapped->classify(queryImage, queryKeypoints, trainImage, trainKeypoints); }
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT std::vector<KeyPoint>& queryKeypoints )
{ return wrapped->classify(queryImage, queryKeypoints); }
CV_WRAP void match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const
{ return wrapped->match(queryImage, queryKeypoints, trainImage, trainKeypoints, matches, mask); }
CV_WRAP void knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const
{ return wrapped->knnMatch(queryImage, queryKeypoints, trainImage, trainKeypoints,
matches, k, mask, compactResult); }
CV_WRAP void radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, std::vector<KeyPoint>& trainKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const
{ return wrapped->radiusMatch(queryImage, queryKeypoints, trainImage, trainKeypoints,
matches, maxDistance, mask, compactResult); }
CV_WRAP void match( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
CV_OUT std::vector<DMatch>& matches, const std::vector<Mat>& masks=std::vector<Mat>() )
{ return wrapped->match(queryImage, queryKeypoints, matches, masks); }
CV_WRAP void knnMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
{ return wrapped->knnMatch(queryImage, queryKeypoints, matches, k, masks, compactResult); }
CV_WRAP void radiusMatch( const Mat& queryImage, std::vector<KeyPoint>& queryKeypoints,
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false )
{ return wrapped->radiusMatch(queryImage, queryKeypoints, matches, maxDistance, masks, compactResult); }
CV_WRAP bool empty() const
{ return wrapped->empty(); }
enum
{
ONEWAY = 1,
FERN = 2
};
CV_WRAP_AS(clone) javaGenericDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
return new javaGenericDescriptorMatcher(wrapped->clone(emptyTrainData));
}
//supported: OneWay, Fern
//unsupported: Vector
CV_WRAP static javaGenericDescriptorMatcher* create( int matcherType )
{
String name;
switch(matcherType)
{
case ONEWAY:
name = "ONEWAY";
break;
case FERN:
name = "FERN";
break;
default:
CV_Error( Error::StsBadArg, "Specified generic descriptor matcher type is not supported." );
break;
}
return new javaGenericDescriptorMatcher(GenericDescriptorMatcher::create(name));
}
CV_WRAP void write( const String& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
wrapped->write(fs);
}
CV_WRAP void read( const String& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
wrapped->read(fs.root());
}
private:
javaGenericDescriptorMatcher(Ptr<GenericDescriptorMatcher> _wrapped) : wrapped(_wrapped)
{}
Ptr<GenericDescriptorMatcher> wrapped;
};
#if 0
//DO NOT REMOVE! The block is required for sources parser
enum

View File

@ -88,7 +88,7 @@ SURF features finder. ::
/* hidden */
};
.. seealso:: :ocv:class:`detail::FeaturesFinder`, :ocv:class:`SURF`
.. seealso:: :ocv:class:`detail::FeaturesFinder`, ``SURF``
detail::OrbFeaturesFinder
-------------------------