Added distance threshold-based matching
This commit is contained in:
@@ -41,6 +41,8 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
//#define _KDTREE
|
||||
|
||||
using namespace std;
|
||||
namespace cv
|
||||
{
|
||||
@@ -439,21 +441,22 @@ void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, v
|
||||
match( image, points, matchings );
|
||||
|
||||
for( size_t i = 0; i < points.size(); i++ )
|
||||
indices[i] = matchings[i].index;
|
||||
indices[i] = matchings[i].indexTrain;
|
||||
}
|
||||
|
||||
void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matchings )
|
||||
void OneWayDescriptorMatch::match( const Mat& image, vector<KeyPoint>& points, vector<DMatch>& matches )
|
||||
{
|
||||
matchings.resize( points.size() );
|
||||
matches.resize( points.size() );
|
||||
IplImage _image = image;
|
||||
for( size_t i = 0; i < points.size(); i++ )
|
||||
{
|
||||
int poseIdx = -1;
|
||||
|
||||
DMatch matching;
|
||||
matching.index = -1;
|
||||
base->FindDescriptor( &_image, points[i].pt, matching.index, poseIdx, matching.distance );
|
||||
matchings[i] = matching;
|
||||
DMatch match;
|
||||
match.indexQuery = i;
|
||||
match.indexTrain = -1;
|
||||
base->FindDescriptor( &_image, points[i].pt, match.indexTrain, poseIdx, match.distance );
|
||||
matches[i] = match;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -744,18 +747,45 @@ void FernDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints,
|
||||
}
|
||||
}
|
||||
|
||||
void FernDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<DMatch>& matchings )
|
||||
void FernDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<DMatch>& matches )
|
||||
{
|
||||
trainFernClassifier();
|
||||
|
||||
matchings.resize( keypoints.size() );
|
||||
matches.resize( keypoints.size() );
|
||||
vector<float> signature( (size_t)classifier->getClassCount() );
|
||||
|
||||
for( size_t pi = 0; pi < keypoints.size(); pi++ )
|
||||
{
|
||||
calcBestProbAndMatchIdx( image, keypoints[pi].pt, matchings[pi].distance, matchings[pi].index, signature );
|
||||
matches[pi].indexQuery = pi;
|
||||
calcBestProbAndMatchIdx( image, keypoints[pi].pt, matches[pi].distance, matches[pi].indexTrain, signature );
|
||||
//matching[pi].distance is log of probability so we need to transform it
|
||||
matchings[pi].distance = -matchings[pi].distance;
|
||||
matches[pi].distance = -matches[pi].distance;
|
||||
}
|
||||
}
|
||||
|
||||
void FernDescriptorMatch::match( const Mat& image, vector<KeyPoint>& keypoints, vector<vector<DMatch> >& matches, float threshold )
|
||||
{
|
||||
trainFernClassifier();
|
||||
|
||||
matches.resize( keypoints.size() );
|
||||
vector<float> signature( (size_t)classifier->getClassCount() );
|
||||
|
||||
for( size_t pi = 0; pi < keypoints.size(); pi++ )
|
||||
{
|
||||
(*classifier)( image, keypoints[pi].pt, signature);
|
||||
|
||||
DMatch match;
|
||||
match.indexQuery = pi;
|
||||
|
||||
for( size_t ci = 0; ci < (size_t)classifier->getClassCount(); ci++ )
|
||||
{
|
||||
if( -signature[ci] < threshold )
|
||||
{
|
||||
match.distance = -signature[ci];
|
||||
match.indexTrain = ci;
|
||||
matches[pi].push_back( match );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user