added bag of words; did some renaming
This commit is contained in:
parent
9d9453906b
commit
26dbbcc070
@ -2188,7 +2188,7 @@ CV_EXPORTS void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1
|
|||||||
const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
|
const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
|
||||||
|
|
||||||
/****************************************************************************************\
|
/****************************************************************************************\
|
||||||
* Evaluation functions *
|
* Functions to evaluate the feature detectors and [generic] descriptor extractors *
|
||||||
\****************************************************************************************/
|
\****************************************************************************************/
|
||||||
|
|
||||||
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
||||||
@ -2201,13 +2201,70 @@ CV_EXPORTS void computeRecallPrecisionCurve( const vector<vector<DMatch> >& matc
|
|||||||
vector<Point2f>& recallPrecisionCurve );
|
vector<Point2f>& recallPrecisionCurve );
|
||||||
CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
|
CV_EXPORTS float getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precision );
|
||||||
|
|
||||||
CV_EXPORTS void evaluateDescriptorMatch( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
CV_EXPORTS void evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
||||||
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
|
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
|
||||||
vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
|
vector<vector<DMatch> >* matches1to2, vector<vector<uchar> >* correctMatches1to2Mask,
|
||||||
vector<Point2f>& recallPrecisionCurve,
|
vector<Point2f>& recallPrecisionCurve,
|
||||||
const Ptr<GenericDescriptorMatch>& dmatch=Ptr<GenericDescriptorMatch>() );
|
const Ptr<GenericDescriptorMatch>& dmatch=Ptr<GenericDescriptorMatch>() );
|
||||||
|
|
||||||
|
|
||||||
|
/****************************************************************************************\
|
||||||
|
* Bag of visual words *
|
||||||
|
\****************************************************************************************/
|
||||||
|
/*
|
||||||
|
* Abstract base class for training of a 'bag of visual words' vocabulary from a set of descriptors
|
||||||
|
*/
|
||||||
|
class BOWTrainer
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/*
|
||||||
|
* Train visual words vocabulary, that is cluster training descriptors and
|
||||||
|
* compute cluster centers.
|
||||||
|
*
|
||||||
|
* descriptors Training descriptors computed on images keypoints.
|
||||||
|
* vocabulary Vocabulary is cluster centers.
|
||||||
|
*/
|
||||||
|
virtual void cluster( const Mat& descriptors, Mat& vocabulary ) = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This is BOWTrainer using cv::kmeans to get vocabulary.
|
||||||
|
*/
|
||||||
|
class BOWKMeansTrainer : public BOWTrainer
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
|
||||||
|
int attempts=3, int flags=KMEANS_PP_CENTERS );
|
||||||
|
|
||||||
|
virtual void cluster( const Mat& descriptors, Mat& vocabulary );
|
||||||
|
|
||||||
|
protected:
|
||||||
|
int clusterCount;
|
||||||
|
TermCriteria termcrit;
|
||||||
|
int attempts;
|
||||||
|
int flags;
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Class to compute image descriptor using bad of visual words.
|
||||||
|
*/
|
||||||
|
class BOWImgDescriptorExtractor
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
|
||||||
|
const Ptr<DescriptorMatcher>& dmatcher );
|
||||||
|
void set( const Mat& vocabulary );
|
||||||
|
void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
|
||||||
|
vector<vector<int> >& pointIdxsInClusters );
|
||||||
|
int descriptorSize() const { return vocabulary.empty() ? 0 : vocabulary.rows; }
|
||||||
|
int descriptorType() const { return CV_32FC1; }
|
||||||
|
|
||||||
|
protected:
|
||||||
|
Mat vocabulary;
|
||||||
|
Ptr<DescriptorExtractor> dextractor;
|
||||||
|
Ptr<DescriptorMatcher> dmatcher;
|
||||||
|
};
|
||||||
|
|
||||||
} /* namespace cv */
|
} /* namespace cv */
|
||||||
|
|
||||||
#endif /* __cplusplus */
|
#endif /* __cplusplus */
|
||||||
|
104
modules/features2d/src/bagofwords.cpp
Executable file
104
modules/features2d/src/bagofwords.cpp
Executable file
@ -0,0 +1,104 @@
|
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// Intel License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp"
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
namespace cv
|
||||||
|
{
|
||||||
|
|
||||||
|
BOWKMeansTrainer::BOWKMeansTrainer( int _clusterCount, const TermCriteria& _termcrit,
|
||||||
|
int _attempts, int _flags ) :
|
||||||
|
clusterCount(_clusterCount), termcrit(_termcrit), attempts(_attempts), flags(_flags)
|
||||||
|
{}
|
||||||
|
|
||||||
|
void BOWKMeansTrainer::cluster( const Mat& descriptors, Mat& vocabulary )
|
||||||
|
{
|
||||||
|
Mat labels;
|
||||||
|
kmeans( descriptors, clusterCount, labels, termcrit, attempts, flags, &vocabulary );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& _dextractor,
|
||||||
|
const Ptr<DescriptorMatcher>& _dmatcher ) :
|
||||||
|
dextractor(_dextractor), dmatcher(_dmatcher)
|
||||||
|
{}
|
||||||
|
|
||||||
|
void BOWImgDescriptorExtractor::set( const Mat& _vocabulary )
|
||||||
|
{
|
||||||
|
dmatcher->clear();
|
||||||
|
vocabulary = _vocabulary;
|
||||||
|
dmatcher->add( vocabulary );
|
||||||
|
}
|
||||||
|
|
||||||
|
void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
|
||||||
|
vector<vector<int> >& pointIdxsInClusters )
|
||||||
|
{
|
||||||
|
int clusterCount = descriptorSize(); // = vocabulary.rows
|
||||||
|
|
||||||
|
// Compute descriptors for the image.
|
||||||
|
Mat descriptors;
|
||||||
|
dextractor->compute( image, keypoints, descriptors );
|
||||||
|
|
||||||
|
// Match keypoint descriptors to cluster center (to vocabulary)
|
||||||
|
vector<DMatch> matches;
|
||||||
|
dmatcher->match( descriptors, matches );
|
||||||
|
|
||||||
|
// Compute image descriptor
|
||||||
|
pointIdxsInClusters = vector<vector<int> >(clusterCount);
|
||||||
|
imgDescriptor = Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) );
|
||||||
|
float *dptr = (float*)imgDescriptor.data;
|
||||||
|
for( size_t i = 0; i < matches.size(); i++ )
|
||||||
|
{
|
||||||
|
int queryIdx = matches[i].indexQuery;
|
||||||
|
int trainIdx = matches[i].indexTrain; // cluster index
|
||||||
|
CV_Assert( queryIdx == (int)i );
|
||||||
|
|
||||||
|
dptr[trainIdx] = dptr[trainIdx] + 1.f;
|
||||||
|
pointIdxsInClusters[trainIdx].push_back( queryIdx );
|
||||||
|
}
|
||||||
|
|
||||||
|
// Normalize image descriptor.
|
||||||
|
imgDescriptor /= descriptors.rows;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -452,11 +452,11 @@ float cv::getRecall( const vector<Point2f>& recallPrecisionCurve, float l_precis
|
|||||||
return recall;
|
return recall;
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::evaluateDescriptorMatch( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
void cv::evaluateGenericDescriptorMatcher( const Mat& img1, const Mat& img2, const Mat& H1to2,
|
||||||
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
|
vector<KeyPoint>& keypoints1, vector<KeyPoint>& keypoints2,
|
||||||
vector<vector<DMatch> >* _matches1to2, vector<vector<uchar> >* _correctMatches1to2Mask,
|
vector<vector<DMatch> >* _matches1to2, vector<vector<uchar> >* _correctMatches1to2Mask,
|
||||||
vector<Point2f>& recallPrecisionCurve,
|
vector<Point2f>& recallPrecisionCurve,
|
||||||
const Ptr<GenericDescriptorMatch>& _dmatch )
|
const Ptr<GenericDescriptorMatch>& _dmatch )
|
||||||
{
|
{
|
||||||
Ptr<GenericDescriptorMatch> dmatch = _dmatch;
|
Ptr<GenericDescriptorMatch> dmatch = _dmatch;
|
||||||
dmatch->clear();
|
dmatch->clear();
|
||||||
|
@ -73,7 +73,7 @@ void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective,
|
|||||||
cout << "< Evaluate descriptor match..." << endl;
|
cout << "< Evaluate descriptor match..." << endl;
|
||||||
vector<Point2f> curve;
|
vector<Point2f> curve;
|
||||||
Ptr<GenericDescriptorMatch> gdm = new VectorDescriptorMatch( descriptorExtractor, descriptorMatcher );
|
Ptr<GenericDescriptorMatch> gdm = new VectorDescriptorMatch( descriptorExtractor, descriptorMatcher );
|
||||||
evaluateDescriptorMatch( img1, img2, H12, keypoints1, keypoints2, 0, 0, curve, gdm );
|
evaluateGenericDescriptorMatcher( img1, img2, H12, keypoints1, keypoints2, 0, 0, curve, gdm );
|
||||||
for( float l_p = 0; l_p < 1 - FLT_EPSILON; l_p+=0.1 )
|
for( float l_p = 0; l_p < 1 - FLT_EPSILON; l_p+=0.1 )
|
||||||
cout << "1-precision = " << l_p << "; recall = " << getRecall( curve, l_p ) << endl;
|
cout << "1-precision = " << l_p << "; recall = " << getRecall( curve, l_p ) << endl;
|
||||||
cout << ">" << endl;
|
cout << ">" << endl;
|
||||||
|
@ -1077,9 +1077,9 @@ void DescriptorQualityTest::runDatasetTest (const vector<Mat> &imgs, const vecto
|
|||||||
vector<vector<uchar> > correctMatchesMask;
|
vector<vector<uchar> > correctMatchesMask;
|
||||||
vector<Point2f> recallPrecisionCurve; // not used because we need recallPrecisionCurve for
|
vector<Point2f> recallPrecisionCurve; // not used because we need recallPrecisionCurve for
|
||||||
// all images in dataset
|
// all images in dataset
|
||||||
evaluateDescriptorMatch( imgs[0], imgs[ci+1], Hs[ci], keypoints1, keypoints2,
|
evaluateGenericDescriptorMatcher( imgs[0], imgs[ci+1], Hs[ci], keypoints1, keypoints2,
|
||||||
&matches1to2, &correctMatchesMask, recallPrecisionCurve,
|
&matches1to2, &correctMatchesMask, recallPrecisionCurve,
|
||||||
descMatch );
|
descMatch );
|
||||||
allMatches1to2.insert( allMatches1to2.end(), matches1to2.begin(), matches1to2.end() );
|
allMatches1to2.insert( allMatches1to2.end(), matches1to2.begin(), matches1to2.end() );
|
||||||
allCorrectMatchesMask.insert( allCorrectMatchesMask.end(), correctMatchesMask.begin(), correctMatchesMask.end() );
|
allCorrectMatchesMask.insert( allCorrectMatchesMask.end(), correctMatchesMask.begin(), correctMatchesMask.end() );
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user