diff --git a/samples/cpp/letter_recog.cpp b/samples/cpp/letter_recog.cpp index df9af6c23..b8b8b134e 100644 --- a/samples/cpp/letter_recog.cpp +++ b/samples/cpp/letter_recog.cpp @@ -519,21 +519,21 @@ int build_knearest_classifier( char* data_filename, int K ) CvKNearest knearest(&train_data, train_resp); CvMat* nearests = cvCreateMat( (nsamples_all - ntrain_samples), K, CV_32FC1); - float _sample[var_count * (nsamples_all - ntrain_samples)]; + float* _sample = new float[var_count * (nsamples_all - ntrain_samples)]; CvMat sample = cvMat( nsamples_all - ntrain_samples, 16, CV_32FC1, _sample ); - float true_results[nsamples_all - ntrain_samples]; + float* true_results = new float[nsamples_all - ntrain_samples]; for (int j = ntrain_samples; j < nsamples_all; j++) { float *s = data->data.fl + j * var_count; - + for (int i = 0; i < var_count; i++) - { + { sample.data.fl[(j - ntrain_samples) * var_count + i] = s[i]; } true_results[j - ntrain_samples] = responses->data.fl[j]; } CvMat *result = cvCreateMat(1, nsamples_all - ntrain_samples, CV_32FC1); - knearest.find_nearest(&sample, K, result, 0, nearests, 0); + knearest.find_nearest(&sample, K, result, 0, nearests, 0); int true_resp = 0; int accuracy = 0; for (int i = 0; i < nsamples_all - ntrain_samples; i++) @@ -546,10 +546,12 @@ int build_knearest_classifier( char* data_filename, int K ) accuracy++; } } - + printf("true_resp = %f%%\tavg accuracy = %f%%\n", (float)true_resp / (nsamples_all - ntrain_samples) * 100, (float)accuracy / (nsamples_all - ntrain_samples) / K * 100); - + + delete[] true_results; + delete[] _sample; cvReleaseMat( &train_resp ); cvReleaseMat( &nearests ); cvReleaseMat( &result ); @@ -593,15 +595,15 @@ int build_nbayes_classifier( char* data_filename ) train_resp->data.fl[i] = responses->data.fl[i]; CvNormalBayesClassifier nbayes(&train_data, train_resp); - float _sample[var_count * (nsamples_all - ntrain_samples)]; + float* _sample = new float[var_count * (nsamples_all - ntrain_samples)]; CvMat sample = cvMat( nsamples_all - ntrain_samples, 16, CV_32FC1, _sample ); - float true_results[nsamples_all - ntrain_samples]; + float* true_results = new float[nsamples_all - ntrain_samples]; for (int j = ntrain_samples; j < nsamples_all; j++) { float *s = data->data.fl + j * var_count; - + for (int i = 0; i < var_count; i++) - { + { sample.data.fl[(j - ntrain_samples) * var_count + i] = s[i]; } true_results[j - ntrain_samples] = responses->data.fl[j]; @@ -615,9 +617,11 @@ int build_nbayes_classifier( char* data_filename ) if (result->data.fl[i] == true_results[i]) true_resp++; } - + printf("true_resp = %f%%\n", (float)true_resp / (nsamples_all - ntrain_samples) * 100); - + + delete[] true_results; + delete[] _sample; cvReleaseMat( &train_resp ); cvReleaseMat( &result ); cvReleaseMat( &data );