moved GpuMat's operations implementation to core module

This commit is contained in:
Vladislav Vinogradov
2011-11-14 14:34:36 +00:00
parent 0f53f2993e
commit 2695039a79
34 changed files with 825 additions and 606 deletions

View File

@@ -43,6 +43,14 @@
#include "precomp.hpp"
#include "opencv2/core/gpumat.hpp"
#include <iostream>
#include <sstream>
#ifdef HAVE_CUDA
#include <cuda_runtime.h>
#include <npp.h>
#endif
using namespace std;
using namespace cv;
using namespace cv::gpu;
@@ -283,6 +291,31 @@ cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), re
m.download(*this);
}
namespace
{
class CV_EXPORTS GpuFuncTable
{
public:
virtual ~GpuFuncTable() {}
virtual void copy(const Mat& src, GpuMat& dst) const = 0;
virtual void copy(const GpuMat& src, Mat& dst) const = 0;
virtual void copy(const GpuMat& src, GpuMat& dst) const = 0;
virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0;
virtual void convert(const GpuMat& src, GpuMat& dst) const = 0;
virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0;
virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0;
virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0;
virtual void free(void* devPtr) const = 0;
};
}
#ifndef HAVE_CUDA
namespace
{
void throw_nogpu()
@@ -308,20 +341,460 @@ namespace
void free(void*) const {}
};
const GpuFuncTable* g_funcTbl = 0;
const GpuFuncTable* gpuFuncTable()
{
static EmptyFuncTable empty;
return g_funcTbl ? g_funcTbl : &empty;
return &empty;
}
}
void cv::gpu::setGpuFuncTable(const GpuFuncTable* funcTbl)
#else // HAVE_CUDA
namespace cv { namespace gpu { namespace device
{
g_funcTbl = funcTbl;
void copy_to_with_mask(DevMem2Db src, DevMem2Db dst, int depth, DevMem2Db mask, int channels, cudaStream_t stream);
template <typename T>
void set_to_gpu(DevMem2Db mat, const T* scalar, int channels, cudaStream_t stream);
template <typename T>
void set_to_gpu(DevMem2Db mat, const T* scalar, DevMem2Db mask, int channels, cudaStream_t stream);
void convert_gpu(DevMem2Db src, int sdepth, DevMem2Db dst, int ddepth, double alpha, double beta, cudaStream_t stream);
}}}
namespace
{
#if defined(__GNUC__)
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__)
#endif
inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
if (cudaSuccess != err)
cv::gpu::error(cudaGetErrorString(err), file, line, func);
}
inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
{
if (err < 0)
{
std::ostringstream msg;
msg << "NPP API Call Error: " << err;
cv::gpu::error(msg.str().c_str(), file, line, func);
}
}
}
namespace
{
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream)
{
Scalar_<T> sf = s;
::cv::gpu::device::set_to_gpu(src, sf.val, src.channels(), stream);
}
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
Scalar_<T> sf = s;
::cv::gpu::device::set_to_gpu(src, sf.val, mask, src.channels(), stream);
}
}
namespace cv { namespace gpu
{
CV_EXPORTS void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
{
::cv::gpu::device::copy_to_with_mask(src, dst, src.depth(), mask, src.channels(), stream);
}
CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst)
{
::cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0);
}
CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
{
::cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
{
typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream);
static const caller_t callers[] =
{
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
kernelSetCaller<float>, kernelSetCaller<double>
};
callers[src.depth()](src, s, stream);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
static const caller_t callers[] =
{
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
kernelSetCaller<float>, kernelSetCaller<double>
};
callers[src.depth()](src, s, mask, stream);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s)
{
setTo(src, s, 0);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
{
setTo(src, s, mask, 0);
}
}}
namespace
{
//////////////////////////////////////////////////////////////////////////
// Convert
template<int n> struct NPPTypeTraits;
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
template<int SDEPTH, int DDEPTH> struct NppConvertFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
};
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void cvt(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void cvt(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
//////////////////////////////////////////////////////////////////////////
// Set
template<int SDEPTH, int SCN> struct NppSetFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, int SCN> struct NppSetMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void set(GpuMat& src, Scalar s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
class CudaFuncTable : public GpuFuncTable
{
public:
void copy(const Mat& src, GpuMat& dst) const
{
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) );
}
void copy(const GpuMat& src, Mat& dst) const
{
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) );
}
void copy(const GpuMat& src, GpuMat& dst) const
{
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) );
}
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const
{
::cv::gpu::copyWithMask(src, dst, mask);
}
void convert(const GpuMat& src, GpuMat& dst) const
{
typedef void (*caller_t)(const GpuMat& src, GpuMat& dst);
static const caller_t callers[7][7][7] =
{
{
/* 8U -> 8U */ {0, 0, 0, 0},
/* 8U -> 8S */ {::cv::gpu::convertTo, ::cv::gpu::convertTo, ::cv::gpu::convertTo, ::cv::gpu::convertTo},
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::cvt},
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::cvt},
/* 8U -> 32S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8U -> 64F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo}
},
{
/* 8S -> 8U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8S -> 8S */ {0,0,0,0},
/* 8S -> 16U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8S -> 16S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8S -> 32S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8S -> 32F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 8S -> 64F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo}
},
{
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::cvt},
/* 16U -> 8S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16U -> 16U */ {0,0,0,0},
/* 16U -> 16S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16U -> 64F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo}
},
{
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::cvt},
/* 16S -> 8S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16S -> 16U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16S -> 16S */ {0,0,0,0},
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 16S -> 64F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo}
},
{
/* 32S -> 8U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32S -> 8S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32S -> 16U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32S -> 16S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32S -> 32S */ {0,0,0,0},
/* 32S -> 32F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32S -> 64F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo}
},
{
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U, nppiConvert_32f8u_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32F -> 8S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::cvt,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32F -> 32S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 32F -> 32F */ {0,0,0,0},
/* 32F -> 64F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo}
},
{
/* 64F -> 8U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 64F -> 8S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 64F -> 16U */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 64F -> 16S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 64F -> 32S */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 64F -> 32F */ {::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo,::cv::gpu::convertTo},
/* 64F -> 64F */ {0,0,0,0}
}
};
caller_t func = callers[src.depth()][dst.depth()][src.channels() - 1];
CV_DbgAssert(func != 0);
func(src, dst);
}
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const
{
::cv::gpu::convertTo(src, dst, alpha, beta);
}
void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const
{
NppiSize sz;
sz.width = m.cols;
sz.height = m.rows;
if (mask.empty())
{
if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
{
cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
return;
}
if (m.depth() == CV_8U)
{
int cn = m.channels();
if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
{
int val = saturate_cast<uchar>(s[0]);
cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
return;
}
}
typedef void (*caller_t)(GpuMat& src, Scalar s);
static const caller_t callers[7][4] =
{
{NppSet<CV_8U, 1, nppiSet_8u_C1R>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSet<CV_8U, 4, nppiSet_8u_C4R>::set},
{::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo},
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::set, NppSet<CV_16U, 2, nppiSet_16u_C2R>::set, ::cv::gpu::setTo, NppSet<CV_16U, 4, nppiSet_16u_C4R>::set},
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::set, NppSet<CV_16S, 2, nppiSet_16s_C2R>::set, ::cv::gpu::setTo, NppSet<CV_16S, 4, nppiSet_16s_C4R>::set},
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSet<CV_32S, 4, nppiSet_32s_C4R>::set},
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSet<CV_32F, 4, nppiSet_32f_C4R>::set},
{::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo}
};
callers[m.depth()][m.channels() - 1](m, s);
}
else
{
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask);
static const caller_t callers[7][4] =
{
{NppSetMask<CV_8U, 1, nppiSet_8u_C1MR>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSetMask<CV_8U, 4, nppiSet_8u_C4MR>::set},
{::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo},
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::set},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::set},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::set},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::set, ::cv::gpu::setTo, ::cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::set},
{::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo, ::cv::gpu::setTo}
};
callers[m.depth()][m.channels() - 1](m, s, mask);
}
}
void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const
{
cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) );
}
void free(void* devPtr) const
{
cudaFree(devPtr);
}
};
const GpuFuncTable* gpuFuncTable()
{
static CudaFuncTable funcTable;
return &funcTable;
}
}
#endif // HAVE_CUDA
void cv::gpu::GpuMat::upload(const Mat& m)
{
CV_DbgAssert(!m.empty());
@@ -458,3 +931,19 @@ void cv::gpu::GpuMat::release()
step = rows = cols = 0;
refcount = 0;
}
void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func)
{
int code = CV_GpuApiCallError;
if (uncaught_exception())
{
const char* errorStr = cvErrorStr(code);
const char* function = func ? func : "unknown function";
cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line;
cerr.flush();
}
else
cv::error( cv::Exception(code, error_string, func, file, line) );
}