ok; all the tests now pass

This commit is contained in:
Vadim Pisarevsky
2014-10-16 21:59:38 +04:00
parent c5261ea3d2
commit 25a7d023dd
3 changed files with 261 additions and 924 deletions

View File

@@ -53,23 +53,22 @@ class MSER_Impl : public MSER
public:
struct Params
{
explicit Params( int _delta=5, double _maxVariation=0.25,
int _minArea=60, int _maxArea=14400,
double _minDiversity=.2, int _maxEvolution=200,
double _areaThreshold=1.01,
double _minMargin=0.003, int _edgeBlurSize=5 )
Params( int _delta=5, int _min_area=60, int _max_area=14400,
double _max_variation=0.25, double _min_diversity=.2,
int _max_evolution=200, double _area_threshold=1.01,
double _min_margin=0.003, int _edge_blur_size=5 )
{
delta = _delta;
minArea = _minArea;
maxArea = _maxArea;
maxVariation = _maxVariation;
minDiversity = _minDiversity;
pass2Only = false;
maxEvolution = _maxEvolution;
areaThreshold = _areaThreshold;
minMargin = _minMargin;
edgeBlurSize = _edgeBlurSize;
minArea = _min_area;
maxArea = _max_area;
maxVariation = _max_variation;
minDiversity = _min_diversity;
maxEvolution = _max_evolution;
areaThreshold = _area_threshold;
minMargin = _min_margin;
edgeBlurSize = _edge_blur_size;
}
int delta;
int minArea;
int maxArea;
@@ -269,11 +268,10 @@ public:
}
// convert the point set to CvSeq
Rect label( Mat& labels, int lval, const Pixel* pix0, int step ) const
Rect capture( const Pixel* pix0, int step, vector<Point>& region ) const
{
int* lptr = labels.ptr<int>();
int lstep = labels.step/sizeof(lptr[0]);
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN;
region.clear();
for( PPixel pix = head; pix != 0; pix = pix0[pix].getNext() )
{
@@ -285,7 +283,7 @@ public:
ymin = std::min(ymin, y);
ymax = std::max(ymax, y);
lptr[lstep*y + x] = lval;
region.push_back(Point(x, y));
}
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
@@ -300,10 +298,9 @@ public:
bool dvar; // the derivative of last var
};
int detectAndLabel( InputArray _src, OutputArray _labels, OutputArray _bboxes );
void detectAndStore( InputArray image,
std::vector<std::vector<Point> >& msers,
OutputArray stats );
void detectRegions( InputArray image,
std::vector<std::vector<Point> >& msers,
std::vector<Rect>& bboxes );
void detect( InputArray _src, vector<KeyPoint>& keypoints, InputArray _mask );
void preprocess1( const Mat& img, int* level_size )
@@ -359,7 +356,7 @@ public:
}
}
void pass( const Mat& img, Mat& labels, int& lval, vector<Rect>& bboxvec,
void pass( const Mat& img, vector<vector<Point> >& msers, vector<Rect>& bboxvec,
Size size, const int* level_size, int mask )
{
CompHistory* histptr = &histbuf[0];
@@ -452,7 +449,10 @@ public:
// check the stablity and push a new history, increase the grey level
if( comptr->isStable(params) )
{
Rect box = comptr->label( labels, lval++, ptr0, step );
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
Rect box = comptr->capture( ptr0, step, mser );
bboxvec.push_back(box);
}
comptr->growHistory( histptr++ );
@@ -472,7 +472,10 @@ public:
// check the stablity here otherwise it wouldn't be an ER
if( comptr->isStable(params) )
{
Rect box = comptr->label( labels, lval++, ptr0, step );
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
Rect box = comptr->capture( ptr0, step, mser );
bboxvec.push_back(box);
}
comptr->growHistory( histptr++ );
@@ -607,7 +610,6 @@ static const float chitab3[]=
3.98692f, 4.2776f, 4.77167f, 133.333f
};
struct MSCRNode;
struct TempMSCR
@@ -620,56 +622,6 @@ struct TempMSCR
struct MSCRNode
{
// the stable mscr should be:
// bigger than minArea and smaller than maxArea
// differ from its ancestor more than minDiversity
bool isStable( const MSER_Impl::Params& params ) const
{
if( size <= params.minArea || size >= params.maxArea )
return 0;
if( gmsr == NULL )
return 1;
double div = (double)(size - gmsr->size)/(double)size;
return div > params.minDiversity;
}
void init( int _index )
{
gmsr = tmsr = NULL;
reinit = 0xffff;
rank = 0;
sizei = size = 1;
prev = next = shortcut = this;
index = _index;
}
// to find the root of one region
MSCRNode* findRoot()
{
MSCRNode* x = this;
MSCRNode* _prev = x;
MSCRNode* _next;
for(;;)
{
_next = x->shortcut;
x->shortcut = _prev;
if( _next == x )
break;
_prev = x;
x = _next;
}
MSCRNode* root = x;
for(;;)
{
_prev = x->shortcut;
x->shortcut = root;
if( _prev == x )
break;
x = _prev;
}
return root;
}
MSCRNode* shortcut;
// to make the finding of root less painful
MSCRNode* prev;
@@ -690,85 +642,175 @@ struct MSCRNode
struct MSCREdge
{
double init(float _chi, MSCRNode* _left, MSCRNode* _right)
{
chi = _chi;
left = _left;
right = _right;
return chi;
}
float chi;
double chi;
MSCRNode* left;
MSCRNode* right;
};
static float ChiSquaredDistance( const uchar* x, const uchar* y )
static double ChiSquaredDistance( const uchar* x, const uchar* y )
{
return (float)((x[0]-y[0])*(x[0]-y[0]))/(float)(x[0]+y[0]+FLT_EPSILON)+
(float)((x[1]-y[1])*(x[1]-y[1]))/(float)(x[1]+y[1]+FLT_EPSILON)+
(float)((x[2]-y[2])*(x[2]-y[2]))/(float)(x[2]+y[2]+FLT_EPSILON);
return (double)((x[0]-y[0])*(x[0]-y[0]))/(double)(x[0]+y[0]+1e-10)+
(double)((x[1]-y[1])*(x[1]-y[1]))/(double)(x[1]+y[1]+1e-10)+
(double)((x[2]-y[2])*(x[2]-y[2]))/(double)(x[2]+y[2]+1e-10);
}
static void initMSCRNode( MSCRNode* node )
{
node->gmsr = node->tmsr = NULL;
node->reinit = 0xffff;
node->rank = 0;
node->sizei = node->size = 1;
node->prev = node->next = node->shortcut = node;
}
// the preprocess to get the edge list with proper gaussian blur
static int preprocessMSER_8UC3( MSCRNode* node, MSCREdge* edge,
double& total, const Mat& src,
Mat& dx, Mat& dy, int Ne, int edgeBlurSize )
static int preprocessMSER_8uC3( MSCRNode* node,
MSCREdge* edge,
double* total,
const Mat& src,
Mat& dx,
Mat& dy,
int Ne,
int edgeBlurSize )
{
int nch = src.channels();
int i, j, nrows = src.rows, ncols = src.cols;
float* dxptr = 0;
float* dyptr = 0;
for( i = 0; i < nrows; i++ )
int srccpt = src.step-src.cols*3;
const uchar* srcptr = src.ptr();
const uchar* lastptr = srcptr+3;
double* dxptr = dx.ptr<double>();
for ( int i = 0; i < src.rows; i++ )
{
const uchar* srcptr = src.ptr(i);
const uchar* nextsrc = src.ptr(std::min(i+1, nrows-1));
dxptr = dx.ptr<float>(i);
dyptr = dy.ptr<float>(i);
for( j = 0; j < ncols-1; j++ )
for ( int j = 0; j < src.cols-1; j++ )
{
dxptr[j] = ChiSquaredDistance( srcptr + j*nch, srcptr + (j+1)*nch );
dyptr[j] = ChiSquaredDistance( srcptr + j*nch, nextsrc + j*nch );
*dxptr = ChiSquaredDistance( srcptr, lastptr );
dxptr++;
srcptr += 3;
lastptr += 3;
}
dyptr[ncols-1] = ChiSquaredDistance( srcptr + (ncols-1)*nch, nextsrc + (ncols-1)*nch );
srcptr += srccpt+3;
lastptr += srccpt+3;
}
// get dx and dy and blur it
if( edgeBlurSize >= 1 )
srcptr = src.ptr();
lastptr = srcptr+src.step;
double* dyptr = dy.ptr<double>();
for ( int i = 0; i < src.rows-1; i++ )
{
GaussianBlur(dx, dx, Size(edgeBlurSize, edgeBlurSize), 0);
GaussianBlur(dy, dy, Size(edgeBlurSize, edgeBlurSize), 0);
for ( int j = 0; j < src.cols; j++ )
{
*dyptr = ChiSquaredDistance( srcptr, lastptr );
dyptr++;
srcptr += 3;
lastptr += 3;
}
srcptr += srccpt;
lastptr += srccpt;
}
dxptr = dx.ptr<float>();
dyptr = dy.ptr<float>();
// get dx and dy and blur it
if ( edgeBlurSize >= 1 )
{
GaussianBlur( dx, dx, Size(edgeBlurSize, edgeBlurSize), 0 );
GaussianBlur( dy, dy, Size(edgeBlurSize, edgeBlurSize), 0 );
}
dxptr = dx.ptr<double>();
dyptr = dy.ptr<double>();
// assian dx, dy to proper edge list and initialize mscr node
// the nasty code here intended to avoid extra loops
MSCRNode* nodeptr = node;
for( j = 0; j < ncols-1; j++ )
initMSCRNode( nodeptr );
nodeptr->index = 0;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
for ( int i = 1; i < src.cols-1; i++ )
{
nodeptr[j].init(j);
total += edge[j].init(dxptr[j], nodeptr+j, nodeptr+j+1);
initMSCRNode( nodeptr );
nodeptr->index = i;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
}
dxptr += ncols - 1;
edge += ncols - 1;
nodeptr[ncols-1].init(ncols - 1);
nodeptr += ncols;
for( i = 1; i < nrows; i++ )
initMSCRNode( nodeptr );
nodeptr->index = src.cols-1;
nodeptr++;
for ( int i = 1; i < src.rows-1; i++ )
{
for( j = 0; j < ncols-1; j++ )
initMSCRNode( nodeptr );
nodeptr->index = i<<16;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
for ( int j = 1; j < src.cols-1; j++ )
{
nodeptr[j].init( (i<<16)|j );
total += edge[j*2].init(dyptr[j], nodeptr + j - ncols, nodeptr + j);
total += edge[j*2+1].init(dxptr[j], nodeptr + j, nodeptr + j + 1);
initMSCRNode( nodeptr );
nodeptr->index = (i<<16)|j;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
nodeptr++;
}
nodeptr[ncols-1].init((i<<16)|(ncols - 1));
total += edge[(ncols-1)*2].init(dyptr[ncols-1], nodeptr - 1, nodeptr + ncols-1);
dxptr += ncols-1;
dyptr += ncols;
edge += 2*ncols - 1;
nodeptr += ncols;
initMSCRNode( nodeptr );
nodeptr->index = (i<<16)|(src.cols-1);
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
nodeptr++;
}
initMSCRNode( nodeptr );
nodeptr->index = (src.rows-1)<<16;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
nodeptr++;
for ( int i = 1; i < src.cols-1; i++ )
{
initMSCRNode( nodeptr );
nodeptr->index = ((src.rows-1)<<16)|i;
*total += edge->chi = *dxptr;
dxptr++;
edge->left = nodeptr;
edge->right = nodeptr+1;
edge++;
*total += edge->chi = *dyptr;
dyptr++;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
edge++;
nodeptr++;
}
initMSCRNode( nodeptr );
nodeptr->index = ((src.rows-1)<<16)|(src.cols-1);
*total += edge->chi = *dyptr;
edge->left = nodeptr-src.cols;
edge->right = nodeptr;
return Ne;
}
@@ -779,37 +821,63 @@ public:
bool operator()(const MSCREdge& a, const MSCREdge& b) const { return a.chi < b.chi; }
};
// to find the root of one region
static MSCRNode* findMSCR( MSCRNode* x )
{
MSCRNode* prev = x;
MSCRNode* next;
for ( ; ; )
{
next = x->shortcut;
x->shortcut = prev;
if ( next == x ) break;
prev= x;
x = next;
}
MSCRNode* root = x;
for ( ; ; )
{
prev = x->shortcut;
x->shortcut = root;
if ( prev == x ) break;
x = prev;
}
return root;
}
// the stable mscr should be:
// bigger than minArea and smaller than maxArea
// differ from its ancestor more than minDiversity
static bool MSCRStableCheck( MSCRNode* x, const MSER_Impl::Params& params )
{
if ( x->size <= params.minArea || x->size >= params.maxArea )
return false;
if ( x->gmsr == NULL )
return true;
double div = (double)(x->size-x->gmsr->size)/(double)x->size;
return div > params.minDiversity;
}
static void
extractMSER_8uC3( const Mat& src, Mat& labels,
extractMSER_8uC3( const Mat& src,
vector<vector<Point> >& msers,
vector<Rect>& bboxvec,
const MSER_Impl::Params& params )
{
int npixels = src.cols*src.rows;
int currlabel = 0;
int* lptr = labels.ptr<int>();
int lstep = (int)(labels.step/sizeof(int));
vector<MSCRNode> mapvec(npixels);
MSCRNode* map = &mapvec[0];
int Ne = npixels*2 - src.cols - src.rows;
vector<MSCREdge> edgevec(Ne+1);
MSCREdge* edge = &edgevec[0];
vector<TempMSCR> mscrvec(npixels);
TempMSCR* mscr = &mscrvec[0];
bboxvec.clear();
MSCRNode* map = (MSCRNode*)cvAlloc( src.cols*src.rows*sizeof(map[0]) );
int Ne = src.cols*src.rows*2-src.cols-src.rows;
MSCREdge* edge = (MSCREdge*)cvAlloc( Ne*sizeof(edge[0]) );
TempMSCR* mscr = (TempMSCR*)cvAlloc( src.cols*src.rows*sizeof(mscr[0]) );
double emean = 0;
Mat dx( src.rows, src.cols-1, CV_32FC1 );
Mat dy( src.rows, src.cols, CV_32FC1 );
Ne = preprocessMSER_8UC3( map, edge, emean, src, dx, dy, Ne, params.edgeBlurSize );
Mat dx( src.rows, src.cols-1, CV_64FC1 );
Mat dy( src.rows-1, src.cols, CV_64FC1 );
Ne = preprocessMSER_8uC3( map, edge, &emean, src, dx, dy, Ne, params.edgeBlurSize );
emean = emean / (double)Ne;
std::sort(edge, edge + Ne, LessThanEdge());
MSCREdge* edge_ub = edge+Ne;
MSCREdge* edgeptr = edge;
TempMSCR* mscrptr = mscr;
// the evolution process
for ( int i = 0; i < params.maxEvolution; i++ )
{
@@ -818,24 +886,23 @@ extractMSER_8uC3( const Mat& src, Mat& labels,
double reminder = k-ti;
double thres = emean*(chitab3[ti]*(1-reminder)+chitab3[ti+1]*reminder);
// to process all the edges in the list that chi < thres
while( edgeptr < edge_ub && edgeptr->chi < thres )
while ( edgeptr < edge_ub && edgeptr->chi < thres )
{
MSCRNode* lr = edgeptr->left->findRoot();
MSCRNode* rr = edgeptr->right->findRoot();
MSCRNode* lr = findMSCR( edgeptr->left );
MSCRNode* rr = findMSCR( edgeptr->right );
// get the region root (who is responsible)
if ( lr != rr )
{
MSCRNode* tmp;
// rank idea take from: N-tree Disjoint-Set Forests for Maximally Stable Extremal Regions
if ( rr->rank > lr->rank )
{
MSCRNode* tmp;
CV_SWAP( lr, rr, tmp );
}
else if ( lr->rank == rr->rank )
{
} else if ( lr->rank == rr->rank ) {
// at the same rank, we will compare the size
if( lr->size > rr->size )
if ( lr->size > rr->size )
{
MSCRNode* tmp;
CV_SWAP( lr, rr, tmp );
}
lr->rank++;
@@ -867,7 +934,7 @@ extractMSER_8uC3( const Mat& src, Mat& labels,
if ( s < lr->s )
{
// skip the first one and check stablity
if ( i > lr->reinit+1 && lr->isStable( params ) )
if ( i > lr->reinit+1 && MSCRStableCheck( lr, params ) )
{
if ( lr->tmsr == NULL )
{
@@ -888,55 +955,51 @@ extractMSER_8uC3( const Mat& src, Mat& labels,
if ( edgeptr >= edge_ub )
break;
}
for( TempMSCR* ptr = mscr; ptr < mscrptr; ptr++ )
{
for ( TempMSCR* ptr = mscr; ptr < mscrptr; ptr++ )
// to prune area with margin less than minMargin
if( ptr->m > params.minMargin )
if ( ptr->m > params.minMargin )
{
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN;
currlabel++;
MSCRNode* lpt = ptr->head;
for( int i = 0; i < ptr->size; i++ )
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN;
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
for ( int i = 0; i < ptr->size; i++ )
{
int x = (lpt->index)&0xffff;
int y = (lpt->index)>>16;
Point pt;
pt.x = (lpt->index)&0xffff;
pt.y = (lpt->index)>>16;
xmin = std::min(xmin, pt.x);
xmax = std::max(xmax, pt.x);
ymin = std::min(ymin, pt.y);
ymax = std::max(ymax, pt.y);
lpt = lpt->next;
xmin = std::min(xmin, x);
xmax = std::max(xmax, x);
ymin = std::min(ymin, y);
ymax = std::max(ymax, y);
lptr[lstep*y + x] = currlabel;
mser.push_back(pt);
}
bboxvec.push_back(Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1));
}
}
cvFree( &mscr );
cvFree( &edge );
cvFree( &map );
}
int MSER_Impl::detectAndLabel( InputArray _src, OutputArray _labels, OutputArray _bboxes )
void MSER_Impl::detectRegions( InputArray _src, vector<vector<Point> >& msers, vector<Rect>& bboxes )
{
Mat src = _src.getMat();
size_t npix = src.total();
vector<Rect> bboxvec;
msers.clear();
bboxes.clear();
if( npix == 0 )
{
_labels.release();
return 0;
}
return;
Size size = src.size();
_labels.create( size, CV_32S );
Mat labels = _labels.getMat();
labels.setTo(Scalar::all(0));
if( src.type() == CV_8U )
{
int level_size[256];
int lval = 1;
if( !src.isContinuous() )
{
src.copyTo(tempsrc);
@@ -946,77 +1009,33 @@ int MSER_Impl::detectAndLabel( InputArray _src, OutputArray _labels, OutputArray
// darker to brighter (MSER+)
preprocess1( src, level_size );
if( !params.pass2Only )
pass( src, labels, lval, bboxvec, size, level_size, 0 );
pass( src, msers, bboxes, size, level_size, 0 );
// brighter to darker (MSER-)
preprocess2( src, level_size );
pass( src, labels, lval, bboxvec, size, level_size, 255 );
pass( src, msers, bboxes, size, level_size, 255 );
}
else
{
CV_Assert( src.type() == CV_8UC3 || src.type() == CV_8UC4 );
extractMSER_8uC3( src, labels, bboxvec, params );
extractMSER_8uC3( src, msers, bboxes, params );
}
if( _bboxes.needed() )
Mat(bboxvec).copyTo(_bboxes);
return (int)bboxvec.size();
}
void MSER_Impl::detectAndStore( InputArray image,
std::vector<std::vector<Point> >& msers,
OutputArray stats )
{
vector<Rect> bboxvec;
Mat labels;
int i, x, y, nregs = detectAndLabel(image, labels, bboxvec);
msers.resize(nregs);
for( i = 0; i < nregs; i++ )
{
Rect r = bboxvec[i];
vector<Point>& msers_i = msers[i];
msers_i.clear();
for( y = r.y; y < r.y + r.height; y++ )
{
const int* lptr = labels.ptr<int>(y);
for( x = r.x; x < r.x + r.width; x++ )
{
if( lptr[x] == i+1 )
msers_i.push_back(Point(x, y));
}
}
}
if( stats.needed() )
Mat(bboxvec).copyTo(stats);
}
void MSER_Impl::detect( InputArray _image, vector<KeyPoint>& keypoints, InputArray _mask )
{
vector<Rect> bboxes;
vector<Point> reg;
Mat labels, mask = _mask.getMat();
vector<vector<Point> > msers;
Mat mask = _mask.getMat();
int i, x, y, ncomps = detectAndLabel(_image, labels, bboxes);
CV_Assert( ncomps == (int)bboxes.size() );
detectRegions(_image, msers, bboxes);
int i, ncomps = (int)msers.size();
keypoints.clear();
for( i = 0; i < ncomps; i++ )
{
Rect r = bboxes[i];
reg.reserve(r.area());
reg.clear();
for( y = r.y; y < r.y + r.height; y++ )
{
const int* lptr = labels.ptr<int>(y);
for( x = r.x; x < r.x + r.width; x++ )
{
if( lptr[x] == i+1 )
reg.push_back(Point(x, y));
}
}
// TODO check transformation from MSER region to KeyPoint
RotatedRect rect = fitEllipse(Mat(reg));
RotatedRect rect = fitEllipse(Mat(msers[i]));
float diam = std::sqrt(rect.size.height*rect.size.width);
if( diam > std::numeric_limits<float>::epsilon() && r.contains(rect.center) &&