Tonemap as Algorithm

This commit is contained in:
Fedor Morozov 2013-07-29 21:35:10 +04:00
parent af2c9077f7
commit 258b98d15b
4 changed files with 207 additions and 121 deletions

View File

@ -59,20 +59,6 @@ enum
INPAINT_TELEA = 1 // A. Telea algorithm INPAINT_TELEA = 1 // A. Telea algorithm
}; };
//! the tonemapping algorithm
enum
{
TONEMAP_LINEAR,
TONEMAP_DRAGO, // Adaptive Logarithmic Mapping For
// Displaying High Contrast Scenes
TONEMAP_REINHARD, // Dynamic Range Reduction Inspired
// by Photoreceptor Physiology
TONEMAP_DURAND, // Fast Bilateral Filtering for the
// Display of High-Dynamic-Range Images
TONEMAP_COUNT
};
//! restores the damaged image areas using one of the available intpainting algorithms //! restores the damaged image areas using one of the available intpainting algorithms
CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask, CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask,
OutputArray dst, double inpaintRadius, int flags ); OutputArray dst, double inpaintRadius, int flags );
@ -96,9 +82,6 @@ CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs,
CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, Mat response = Mat()); CV_EXPORTS_W void makeHDR(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, Mat response = Mat());
CV_EXPORTS_W void tonemap(InputArray src, OutputArray dst, int algorithm,
const std::vector<float>& params = std::vector<float>());
CV_EXPORTS_W void exposureFusion(InputArrayOfArrays srcImgs, OutputArray dst, float wc = 1.0f, float ws = 1.0f, float we = 0.0f); CV_EXPORTS_W void exposureFusion(InputArrayOfArrays srcImgs, OutputArray dst, float wc = 1.0f, float ws = 1.0f, float we = 0.0f);
CV_EXPORTS_W void shiftMat(InputArray src, Point shift, OutputArray dst); CV_EXPORTS_W void shiftMat(InputArray src, Point shift, OutputArray dst);
@ -108,6 +91,66 @@ CV_EXPORTS_W Point getExpShift(InputArray img0, InputArray img1, int max_bits =
CV_EXPORTS_W void estimateResponse(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, int samples = 50, float lambda = 10); CV_EXPORTS_W void estimateResponse(InputArrayOfArrays srcImgs, const std::vector<float>& exp_times, OutputArray dst, int samples = 50, float lambda = 10);
CV_EXPORTS_W void alignImages(InputArrayOfArrays src, std::vector<Mat>& dst); CV_EXPORTS_W void alignImages(InputArrayOfArrays src, std::vector<Mat>& dst);
class CV_EXPORTS_W Tonemap : public Algorithm
{
public:
Tonemap(float gamma);
virtual ~Tonemap();
void process(InputArray src, OutputArray dst);
static Ptr<Tonemap> create(const String& name);
protected:
float gamma;
Mat img;
void linearMap();
void gammaCorrection();
virtual void tonemap() = 0;
};
class CV_EXPORTS_W TonemapLinear : public Tonemap
{
public:
TonemapLinear(float gamma = 2.2f);
AlgorithmInfo* info() const;
protected:
void tonemap();
};
class CV_EXPORTS_W TonemapDrago : public Tonemap
{
public:
TonemapDrago(float gamma = 2.2f, float bias = 0.85f);
AlgorithmInfo* info() const;
protected:
float bias;
void tonemap();
};
class CV_EXPORTS_W TonemapDurand : public Tonemap
{
public:
TonemapDurand(float gamma = 2.2f, float contrast = 4.0f, float sigma_color = 2.0f, float sigma_space = 2.0f);
AlgorithmInfo* info() const;
protected:
float contrast;
float sigma_color;
float sigma_space;
void tonemap();
};
class CV_EXPORTS_W TonemapReinhardDevlin : public Tonemap
{
public:
TonemapReinhardDevlin(float gamma = 2.2f, float intensity = 0.0f, float color_adapt = 0.0f, float light_adapt = 1.0f);
AlgorithmInfo* info() const;
protected:
float intensity;
float color_adapt;
float light_adapt;
void tonemap();
};
} // cv } // cv
#endif #endif

View File

@ -161,7 +161,6 @@ void makeHDR(InputArrayOfArrays _images, const std::vector<float>& _exp_times, O
res_ptr[channel] = exp(sum[channel] / weight_sum); res_ptr[channel] = exp(sum[channel] / weight_sum);
} }
} }
tonemap(result, result, 0);
} }
void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, float wc, float ws, float we) void exposureFusion(InputArrayOfArrays _images, OutputArray _dst, float wc, float ws, float we)

View File

@ -47,20 +47,58 @@
namespace cv namespace cv
{ {
static float getParam(const std::vector<float>& params, size_t i, float defval) Tonemap::Tonemap(float gamma) : gamma(gamma)
{ {
if(params.size() > i) { }
return params[i];
} else { Tonemap::~Tonemap()
return defval; {
}
void Tonemap::process(InputArray src, OutputArray dst)
{
Mat srcMat = src.getMat();
CV_Assert(!srcMat.empty());
dst.create(srcMat.size(), CV_32FC3);
img = dst.getMat();
srcMat.copyTo(img);
linearMap();
tonemap();
gammaCorrection();
}
void Tonemap::linearMap()
{
double min, max;
minMaxLoc(img, &min, &max);
if(max - min > DBL_EPSILON) {
img = (img - min) / (max - min);
} }
} }
static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& params) void Tonemap::gammaCorrection()
{
pow(img, 1.0f / gamma, img);
}
void TonemapLinear::tonemap()
{
}
TonemapLinear::TonemapLinear(float gamma) : Tonemap(gamma)
{
}
TonemapDrago::TonemapDrago(float gamma, float bias) :
Tonemap(gamma),
bias(bias)
{
}
void TonemapDrago::tonemap()
{ {
float bias_value = getParam(params, 1, 0.85f);
Mat gray_img; Mat gray_img;
cvtColor(src_img, gray_img, COLOR_RGB2GRAY); cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img; Mat log_img;
log(gray_img, log_img); log(gray_img, log_img);
float mean = expf(static_cast<float>(sum(log_img)[0]) / log_img.total()); float mean = expf(static_cast<float>(sum(log_img)[0]) / log_img.total());
@ -73,7 +111,7 @@ static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& param
Mat map; Mat map;
log(gray_img + 1.0f, map); log(gray_img + 1.0f, map);
Mat div; Mat div;
pow(gray_img / (float)max, logf(bias_value) / logf(0.5f), div); pow(gray_img / (float)max, logf(bias) / logf(0.5f), div);
log(2.0f + 8.0f * div, div); log(2.0f + 8.0f * div, div);
map = map.mul(1.0f / div); map = map.mul(1.0f / div);
map = map.mul(1.0f / gray_img); map = map.mul(1.0f / gray_img);
@ -81,58 +119,27 @@ static void DragoMap(Mat& src_img, Mat &dst_img, const std::vector<float>& param
gray_img.release(); gray_img.release();
std::vector<Mat> channels(3); std::vector<Mat> channels(3);
split(src_img, channels); split(img, channels);
for(int i = 0; i < 3; i++) { for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map); channels[i] = channels[i].mul(map);
} }
map.release(); map.release();
merge(channels, dst_img); merge(channels, img);
linearMap();
} }
static void ReinhardDevlinMap(Mat& src_img, Mat &dst_img, const std::vector<float>& params) TonemapDurand::TonemapDurand(float gamma, float contrast, float sigma_color, float sigma_space) :
Tonemap(gamma),
contrast(contrast),
sigma_color(sigma_color),
sigma_space(sigma_space)
{ {
float intensity = getParam(params, 1, 0.0f);
float color_adapt = getParam(params, 2, 0.0f);
float light_adapt = getParam(params, 3, 1.0f);
Mat gray_img;
cvtColor(src_img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
float log_mean = (float)sum(log_img)[0] / log_img.total();
double log_min, log_max;
minMaxLoc(log_img, &log_min, &log_max);
log_img.release();
double key = (float)((log_max - log_mean) / (log_max - log_min));
float map_key = 0.3f + 0.7f * pow((float)key, 1.4f);
intensity = exp(-intensity);
Scalar chan_mean = mean(src_img);
float gray_mean = (float)mean(gray_img)[0];
std::vector<Mat> channels(3);
split(src_img, channels);
for(int i = 0; i < 3; i++) {
float global = color_adapt * (float)chan_mean[i] + (1.0f - color_adapt) * gray_mean;
Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img;
adapt = light_adapt * adapt + (1.0f - light_adapt) * global;
pow(intensity * adapt, map_key, adapt);
channels[i] = channels[i].mul(1.0f / (adapt + channels[i]));
}
gray_img.release();
merge(channels, dst_img);
} }
static void DurandMap(Mat& src_img, Mat& dst_img, const std::vector<float>& params) void TonemapDurand::tonemap()
{ {
float contrast = getParam(params, 1, 4.0f);
float sigma_color = getParam(params, 2, 2.0f);
float sigma_space = getParam(params, 3, 2.0f);
Mat gray_img; Mat gray_img;
cvtColor(src_img, gray_img, COLOR_RGB2GRAY); cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img; Mat log_img;
log(gray_img, log_img); log(gray_img, log_img);
Mat map_img; Mat map_img;
@ -148,39 +155,75 @@ static void DurandMap(Mat& src_img, Mat& dst_img, const std::vector<float>& para
gray_img.release(); gray_img.release();
std::vector<Mat> channels(3); std::vector<Mat> channels(3);
split(src_img, channels); split(img, channels);
for(int i = 0; i < 3; i++) { for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map_img); channels[i] = channels[i].mul(map_img);
} }
merge(channels, dst_img); merge(channels, img);
} }
void tonemap(InputArray _src, OutputArray _dst, int algorithm, TonemapReinhardDevlin::TonemapReinhardDevlin(float gamma, float intensity, float color_adapt, float light_adapt) :
const std::vector<float>& params) Tonemap(gamma),
intensity(intensity),
color_adapt(color_adapt),
light_adapt(light_adapt)
{ {
typedef void (*tonemap_func)(Mat&, Mat&, const std::vector<float>&); }
tonemap_func functions[TONEMAP_COUNT] = {
NULL, DragoMap, ReinhardDevlinMap, DurandMap};
Mat src = _src.getMat(); void TonemapReinhardDevlin::tonemap()
CV_Assert(!src.empty()); {
CV_Assert(0 <= algorithm && algorithm < TONEMAP_COUNT); Mat gray_img;
_dst.create(src.size(), CV_32FC3); cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat dst = _dst.getMat(); Mat log_img;
src.copyTo(dst); log(gray_img, log_img);
double min, max; float log_mean = (float)sum(log_img)[0] / log_img.total();
minMaxLoc(dst, &min, &max); double log_min, log_max;
if(max - min < DBL_EPSILON) { minMaxLoc(log_img, &log_min, &log_max);
return; log_img.release();
double key = (float)((log_max - log_mean) / (log_max - log_min));
float map_key = 0.3f + 0.7f * pow((float)key, 1.4f);
intensity = exp(-intensity);
Scalar chan_mean = mean(img);
float gray_mean = (float)mean(gray_img)[0];
std::vector<Mat> channels(3);
split(img, channels);
for(int i = 0; i < 3; i++) {
float global = color_adapt * (float)chan_mean[i] + (1.0f - color_adapt) * gray_mean;
Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img;
adapt = light_adapt * adapt + (1.0f - light_adapt) * global;
pow(intensity * adapt, map_key, adapt);
channels[i] = channels[i].mul(1.0f / (adapt + channels[i]));
} }
dst = (dst - min) / (max - min); gray_img.release();
if(functions[algorithm]) { merge(channels, img);
functions[algorithm](dst, dst, params); linearMap();
} }
minMaxLoc(dst, &min, &max);
dst = (dst - min) / (max - min); Ptr<Tonemap> Tonemap::create(const String& TonemapType)
float gamma = getParam(params, 0, 1.0f); {
pow(dst, 1.0f / gamma, dst); return Algorithm::create<Tonemap>("Tonemap." + TonemapType);
} }
CV_INIT_ALGORITHM(TonemapLinear, "Tonemap.Linear",
obj.info()->addParam(obj, "gamma", obj.gamma));
CV_INIT_ALGORITHM(TonemapDrago, "Tonemap.Drago",
obj.info()->addParam(obj, "gamma", obj.gamma);
obj.info()->addParam(obj, "bias", obj.bias));
CV_INIT_ALGORITHM(TonemapDurand, "Tonemap.Durand",
obj.info()->addParam(obj, "gamma", obj.gamma);
obj.info()->addParam(obj, "contrast", obj.contrast);
obj.info()->addParam(obj, "sigma_color", obj.sigma_color);
obj.info()->addParam(obj, "sigma_space", obj.sigma_space));
CV_INIT_ALGORITHM(TonemapReinhardDevlin, "Tonemap.ReinhardDevlin",
obj.info()->addParam(obj, "gamma", obj.gamma);
obj.info()->addParam(obj, "intensity", obj.intensity);
obj.info()->addParam(obj, "color_adapt", obj.color_adapt);
obj.info()->addParam(obj, "light_adapt", obj.light_adapt));
} }

View File

@ -70,6 +70,7 @@ TEST(Photo_HdrFusion, regression)
vector<Mat> images; vector<Mat> images;
ifstream list_file(fuse_path + "list.txt"); ifstream list_file(fuse_path + "list.txt");
ASSERT_TRUE(list_file.is_open());
string name; string name;
float val; float val;
while(list_file >> name >> val) { while(list_file >> name >> val) {
@ -110,48 +111,48 @@ TEST(Photo_HdrFusion, regression)
TEST(Photo_Tonemap, regression) TEST(Photo_Tonemap, regression)
{ {
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
vector<Mat>images(TONEMAP_COUNT);
for(int i = 0; i < TONEMAP_COUNT; i++) {
stringstream stream;
stream << "tonemap" << i << ".png";
string file_name;
stream >> file_name;
loadImage(folder + "tonemap/" + file_name ,images[i]);
}
Mat img; Mat img;
loadImage(folder + "rle.hdr", img); loadImage(test_path + "../rle.hdr", img);
vector<float> param(1); ifstream list_file(test_path + "list.txt");
param[0] = 2.2f; ASSERT_TRUE(list_file.is_open());
for(int i = 0; i < TONEMAP_COUNT; i++) {
string name;
while(list_file >> name) {
Mat expected = imread(test_path + name + ".png");
ASSERT_FALSE(img.empty()) << "Could not load input image " << test_path + name + ".png";
Ptr<Tonemap> mapper = Tonemap::create(name);
ASSERT_FALSE(mapper.empty()) << "Could not find mapper " << name;
Mat result; Mat result;
tonemap(img, result, i, param); mapper->process(img, result);
result.convertTo(result, CV_8UC3, 255); result.convertTo(result, CV_8UC3, 255);
checkEqual(images[i], result, 0); checkEqual(expected, result, 0);
} }
list_file.close();
} }
TEST(Photo_Align, regression) TEST(Photo_Align, regression)
{ {
const int TESTS_COUNT = 100; const int TESTS_COUNT = 100;
string folder = string(cvtest::TS::ptr()->get_data_path()) + "hdr/"; string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
string file_name = folder + "exp_fusion.png"; string file_name = folder + "lena.png";
Mat img = imread(file_name); Mat img = imread(file_name);
ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name; ASSERT_FALSE(img.empty()) << "Could not load input image " << file_name;
cvtColor(img, img, COLOR_RGB2GRAY); cvtColor(img, img, COLOR_RGB2GRAY);
int max_bits = 6; int max_bits = 5;
int max_shift = 64; int max_shift = 32;
srand(time(0)); srand(static_cast<unsigned>(time(0)));
int errors = 0;
for(int i = 0; i < TESTS_COUNT; i++) { for(int i = 0; i < TESTS_COUNT; i++) {
Point shift(rand() % max_shift, rand() % max_shift); Point shift(rand() % max_shift, rand() % max_shift);
Mat res; Mat res;
shiftMat(img, shift, res); shiftMat(img, shift, res);
Point calc = getExpShift(img, res, max_bits); Point calc = getExpShift(img, res, max_bits);
ASSERT_TRUE(calc == -shift); errors += (calc != -shift);
} }
ASSERT_TRUE(errors < 5);
} }