removed optim module; moved its functionality to core and photo modules; moved drawing functions from core to imgproc. Removed FilterEngine etc. from public API
This commit is contained in:
102
modules/core/test/test_conjugate_gradient.cpp
Normal file
102
modules/core/test/test_conjugate_gradient.cpp
Normal file
@@ -0,0 +1,102 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "test_precomp.hpp"
|
||||
#include <cstdlib>
|
||||
|
||||
static void mytest(cv::Ptr<cv::ConjGradSolver> solver,cv::Ptr<cv::MinProblemSolver::Function> ptr_F,cv::Mat& x,
|
||||
cv::Mat& etalon_x,double etalon_res){
|
||||
solver->setFunction(ptr_F);
|
||||
//int ndim=MAX(step.cols,step.rows);
|
||||
double res=solver->minimize(x);
|
||||
std::cout<<"res:\n\t"<<res<<std::endl;
|
||||
std::cout<<"x:\n\t"<<x<<std::endl;
|
||||
std::cout<<"etalon_res:\n\t"<<etalon_res<<std::endl;
|
||||
std::cout<<"etalon_x:\n\t"<<etalon_x<<std::endl;
|
||||
double tol=solver->getTermCriteria().epsilon;
|
||||
ASSERT_TRUE(std::abs(res-etalon_res)<tol);
|
||||
/*for(cv::Mat_<double>::iterator it1=x.begin<double>(),it2=etalon_x.begin<double>();it1!=x.end<double>();it1++,it2++){
|
||||
ASSERT_TRUE(std::abs((*it1)-(*it2))<tol);
|
||||
}*/
|
||||
std::cout<<"--------------------------\n";
|
||||
}
|
||||
|
||||
class SphereF:public cv::MinProblemSolver::Function{
|
||||
public:
|
||||
double calc(const double* x)const{
|
||||
return x[0]*x[0]+x[1]*x[1]+x[2]*x[2]+x[3]*x[3];
|
||||
}
|
||||
void getGradient(const double* x,double* grad){
|
||||
for(int i=0;i<4;i++){
|
||||
grad[i]=2*x[i];
|
||||
}
|
||||
}
|
||||
};
|
||||
class RosenbrockF:public cv::MinProblemSolver::Function{
|
||||
double calc(const double* x)const{
|
||||
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
|
||||
}
|
||||
void getGradient(const double* x,double* grad){
|
||||
grad[0]=-2*(1-x[0])-400*(x[1]-x[0]*x[0])*x[0];
|
||||
grad[1]=200*(x[1]-x[0]*x[0]);
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Optim_ConjGrad, regression_basic){
|
||||
cv::Ptr<cv::ConjGradSolver> solver=cv::ConjGradSolver::create();
|
||||
#if 1
|
||||
{
|
||||
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new SphereF());
|
||||
cv::Mat x=(cv::Mat_<double>(4,1)<<50.0,10.0,1.0,-10.0),
|
||||
etalon_x=(cv::Mat_<double>(1,4)<<0.0,0.0,0.0,0.0);
|
||||
double etalon_res=0.0;
|
||||
mytest(solver,ptr_F,x,etalon_x,etalon_res);
|
||||
}
|
||||
#endif
|
||||
#if 1
|
||||
{
|
||||
cv::Ptr<cv::MinProblemSolver::Function> ptr_F(new RosenbrockF());
|
||||
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
|
||||
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
|
||||
double etalon_res=0.0;
|
||||
mytest(solver,ptr_F,x,etalon_x,etalon_res);
|
||||
}
|
||||
#endif
|
||||
}
|
Reference in New Issue
Block a user