Merge pull request #1427 from SpecLad:merge-2.4

This commit is contained in:
Roman Donchenko
2013-09-10 18:28:19 +04:00
committed by OpenCV Buildbot
41 changed files with 3521 additions and 150 deletions

View File

@@ -254,19 +254,19 @@ bool CvtColorIPPLoopCopy(Mat& src, Mat& dst, const Cvt& cvt)
return ok;
}
IppStatus __stdcall ippiSwapChannels_8u_C3C4Rf(const Ipp8u* pSrc, int srcStep, Ipp8u* pDst, int dstStep,
static IppStatus CV_STDCALL ippiSwapChannels_8u_C3C4Rf(const Ipp8u* pSrc, int srcStep, Ipp8u* pDst, int dstStep,
IppiSize roiSize, const int *dstOrder)
{
return ippiSwapChannels_8u_C3C4R(pSrc, srcStep, pDst, dstStep, roiSize, dstOrder, MAX_IPP8u);
}
IppStatus __stdcall ippiSwapChannels_16u_C3C4Rf(const Ipp16u* pSrc, int srcStep, Ipp16u* pDst, int dstStep,
static IppStatus CV_STDCALL ippiSwapChannels_16u_C3C4Rf(const Ipp16u* pSrc, int srcStep, Ipp16u* pDst, int dstStep,
IppiSize roiSize, const int *dstOrder)
{
return ippiSwapChannels_16u_C3C4R(pSrc, srcStep, pDst, dstStep, roiSize, dstOrder, MAX_IPP16u);
}
IppStatus __stdcall ippiSwapChannels_32f_C3C4Rf(const Ipp32f* pSrc, int srcStep, Ipp32f* pDst, int dstStep,
static IppStatus CV_STDCALL ippiSwapChannels_32f_C3C4Rf(const Ipp32f* pSrc, int srcStep, Ipp32f* pDst, int dstStep,
IppiSize roiSize, const int *dstOrder)
{
return ippiSwapChannels_32f_C3C4R(pSrc, srcStep, pDst, dstStep, roiSize, dstOrder, MAX_IPP32f);

View File

@@ -50,9 +50,73 @@
#include <iostream>
#include <vector>
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
namespace cv
{
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
typedef IppStatus (CV_STDCALL* ippiSetFunc)(const void*, void *, int, IppiSize);
typedef IppStatus (CV_STDCALL* ippiWarpPerspectiveBackFunc)(const void*, IppiSize, int, IppiRect, void *, int, IppiRect, double [3][3], int);
typedef IppStatus (CV_STDCALL* ippiWarpAffineBackFunc)(const void*, IppiSize, int, IppiRect, void *, int, IppiRect, double [2][3], int);
typedef IppStatus (CV_STDCALL* ippiResizeSqrPixelFunc)(const void*, IppiSize, int, IppiRect, void*, int, IppiRect, double, double, double, double, int, Ipp8u *);
template <int channels, typename Type>
bool IPPSetSimple(cv::Scalar value, void *dataPointer, int step, IppiSize &size, ippiSetFunc func)
{
Type values[channels];
for( int i = 0; i < channels; i++ )
values[i] = (Type)value[i];
return func(values, dataPointer, step, size) >= 0;
}
bool IPPSet(const cv::Scalar &value, void *dataPointer, int step, IppiSize &size, int channels, int depth)
{
if( channels == 1 )
{
switch( depth )
{
case CV_8U:
return ippiSet_8u_C1R((Ipp8u)value[0], (Ipp8u *)dataPointer, step, size) >= 0;
case CV_16U:
return ippiSet_16u_C1R((Ipp16u)value[0], (Ipp16u *)dataPointer, step, size) >= 0;
case CV_32F:
return ippiSet_32f_C1R((Ipp32f)value[0], (Ipp32f *)dataPointer, step, size) >= 0;
}
}
else
{
if( channels == 3 )
{
switch( depth )
{
case CV_8U:
return IPPSetSimple<3, Ipp8u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_8u_C3R);
case CV_16U:
return IPPSetSimple<3, Ipp16u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_16u_C3R);
case CV_32F:
return IPPSetSimple<3, Ipp32f>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_32f_C3R);
}
}
else if( channels == 4 )
{
switch( depth )
{
case CV_8U:
return IPPSetSimple<4, Ipp8u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_8u_C4R);
case CV_16U:
return IPPSetSimple<4, Ipp16u>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_16u_C4R);
case CV_32F:
return IPPSetSimple<4, Ipp32f>(value, dataPointer, step, size, (ippiSetFunc)ippiSet_32f_C4R);
}
}
}
return false;
}
#endif
/************** interpolation formulas and tables ***************/
const int INTER_RESIZE_COEF_BITS=11;
@@ -1795,6 +1859,45 @@ static int computeResizeAreaTab( int ssize, int dsize, int cn, double scale, Dec
return k;
}
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPresizeInvoker :
public ParallelLoopBody
{
public:
IPPresizeInvoker(Mat &_src, Mat &_dst, double &_inv_scale_x, double &_inv_scale_y, int _mode, ippiResizeSqrPixelFunc _func, bool *_ok) :
ParallelLoopBody(), src(_src), dst(_dst), inv_scale_x(_inv_scale_x), inv_scale_y(_inv_scale_y), mode(_mode), func(_func), ok(_ok)
{
*ok = true;
}
virtual void operator() (const Range& range) const
{
int cn = src.channels();
IppiRect srcroi = { 0, range.start, src.cols, range.end - range.start };
int dsty = CV_IMIN(cvRound(range.start * inv_scale_y), dst.rows);
int dstwidth = CV_IMIN(cvRound(src.cols * inv_scale_x), dst.cols);
int dstheight = CV_IMIN(cvRound(range.end * inv_scale_y), dst.rows);
IppiRect dstroi = { 0, dsty, dstwidth, dstheight - dsty };
int bufsize;
ippiResizeGetBufSize( srcroi, dstroi, cn, mode, &bufsize );
Ipp8u *buf;
buf = ippsMalloc_8u( bufsize );
IppStatus sts;
if( func( src.data, ippiSize(src.cols, src.rows), (int)src.step[0], srcroi, dst.data, (int)dst.step[0], dstroi, inv_scale_x, inv_scale_y, 0, 0, mode, buf ) < 0 )
*ok = false;
ippsFree(buf);
}
private:
Mat &src;
Mat &dst;
double inv_scale_x;
double inv_scale_y;
int mode;
ippiResizeSqrPixelFunc func;
bool *ok;
const IPPresizeInvoker& operator= (const IPPresizeInvoker&);
};
#endif
}
@@ -1937,6 +2040,34 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
double scale_x = 1./inv_scale_x, scale_y = 1./inv_scale_y;
int k, sx, sy, dx, dy;
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
int mode = interpolation == INTER_LINEAR ? IPPI_INTER_LINEAR : 0;
int type = src.type();
ippiResizeSqrPixelFunc ippFunc =
type == CV_8UC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_8u_C1R :
type == CV_8UC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_8u_C3R :
type == CV_8UC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_8u_C4R :
type == CV_16UC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16u_C1R :
type == CV_16UC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16u_C3R :
type == CV_16UC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16u_C4R :
type == CV_16SC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16s_C1R :
type == CV_16SC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16s_C3R :
type == CV_16SC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_16s_C4R :
type == CV_32FC1 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_32f_C1R :
type == CV_32FC3 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_32f_C3R :
type == CV_32FC4 ? (ippiResizeSqrPixelFunc)ippiResizeSqrPixel_32f_C4R :
0;
if( ippFunc && mode != 0 )
{
bool ok;
Range range(0, src.rows);
IPPresizeInvoker invoker(src, dst, inv_scale_x, inv_scale_y, mode, ippFunc, &ok);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
if( ok )
return;
}
#endif
if( interpolation == INTER_NEAREST )
{
resizeNN( src, dst, inv_scale_x, inv_scale_y );
@@ -3446,6 +3577,49 @@ private:
double *M;
};
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPwarpAffineInvoker :
public ParallelLoopBody
{
public:
IPPwarpAffineInvoker(Mat &_src, Mat &_dst, double (&_coeffs)[2][3], int &_interpolation, int &_borderType, const Scalar &_borderValue, ippiWarpAffineBackFunc _func, bool *_ok) :
ParallelLoopBody(), src(_src), dst(_dst), mode(_interpolation), coeffs(_coeffs), borderType(_borderType), borderValue(_borderValue), func(_func), ok(_ok)
{
*ok = true;
}
virtual void operator() (const Range& range) const
{
IppiSize srcsize = { src.cols, src.rows };
IppiRect srcroi = { 0, 0, src.cols, src.rows };
IppiRect dstroi = { 0, range.start, dst.cols, range.end - range.start };
int cnn = src.channels();
if( borderType == BORDER_CONSTANT )
{
IppiSize setSize = { dst.cols, range.end - range.start };
void *dataPointer = dst.data + dst.step[0] * range.start;
if( !IPPSet( borderValue, dataPointer, (int)dst.step[0], setSize, cnn, src.depth() ) )
{
*ok = false;
return;
}
}
if( func( src.data, srcsize, (int)src.step[0], srcroi, dst.data, (int)dst.step[0], dstroi, coeffs, mode ) < 0) ////Aug 2013: problem in IPP 7.1, 8.0 : sometimes function return ippStsCoeffErr
*ok = false;
}
private:
Mat &src;
Mat &dst;
double (&coeffs)[2][3];
int mode;
int borderType;
Scalar borderValue;
ippiWarpAffineBackFunc func;
bool *ok;
const IPPwarpAffineInvoker& operator= (const IPPwarpAffineInvoker&);
};
#endif
}
@@ -3492,6 +3666,50 @@ void cv::warpAffine( InputArray _src, OutputArray _dst,
const int AB_BITS = MAX(10, (int)INTER_BITS);
const int AB_SCALE = 1 << AB_BITS;
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
int depth = src.depth();
int channels = src.channels();
if( ( depth == CV_8U || depth == CV_16U || depth == CV_32F ) &&
( channels == 1 || channels == 3 || channels == 4 ) &&
( borderType == cv::BORDER_TRANSPARENT || ( borderType == cv::BORDER_CONSTANT ) ) )
{
int type = src.type();
ippiWarpAffineBackFunc ippFunc =
type == CV_8UC1 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_8u_C1R :
type == CV_8UC3 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_8u_C3R :
type == CV_8UC4 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_8u_C4R :
type == CV_16UC1 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_16u_C1R :
type == CV_16UC3 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_16u_C3R :
type == CV_16UC4 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_16u_C4R :
type == CV_32FC1 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_32f_C1R :
type == CV_32FC3 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_32f_C3R :
type == CV_32FC4 ? (ippiWarpAffineBackFunc)ippiWarpAffineBack_32f_C4R :
0;
int mode =
flags == INTER_LINEAR ? IPPI_INTER_LINEAR :
flags == INTER_NEAREST ? IPPI_INTER_NN :
flags == INTER_CUBIC ? IPPI_INTER_CUBIC :
0;
if( mode && ippFunc )
{
double coeffs[2][3];
for( int i = 0; i < 2; i++ )
{
for( int j = 0; j < 3; j++ )
{
coeffs[i][j] = matM.at<double>(i, j);
}
}
bool ok;
Range range(0, dst.rows);
IPPwarpAffineInvoker invoker(src, dst, coeffs, mode, borderType, borderValue, ippFunc, &ok);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
if( ok )
return;
}
}
#endif
for( x = 0; x < dst.cols; x++ )
{
adelta[x] = saturate_cast<int>(M[0]*x*AB_SCALE);
@@ -3599,6 +3817,50 @@ private:
Scalar borderValue;
};
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPwarpPerspectiveInvoker :
public ParallelLoopBody
{
public:
IPPwarpPerspectiveInvoker(Mat &_src, Mat &_dst, double (&_coeffs)[3][3], int &_interpolation, int &_borderType, const Scalar &_borderValue, ippiWarpPerspectiveBackFunc _func, bool *_ok) :
ParallelLoopBody(), src(_src), dst(_dst), mode(_interpolation), coeffs(_coeffs), borderType(_borderType), borderValue(_borderValue), func(_func), ok(_ok)
{
*ok = true;
}
virtual void operator() (const Range& range) const
{
IppiSize srcsize = {src.cols, src.rows};
IppiRect srcroi = {0, 0, src.cols, src.rows};
IppiRect dstroi = {0, range.start, dst.cols, range.end - range.start};
int cnn = src.channels();
if( borderType == BORDER_CONSTANT )
{
IppiSize setSize = {dst.cols, range.end - range.start};
void *dataPointer = dst.data + dst.step[0] * range.start;
if( !IPPSet( borderValue, dataPointer, (int)dst.step[0], setSize, cnn, src.depth() ) )
{
*ok = false;
return;
}
}
if( func(src.data, srcsize, (int)src.step[0], srcroi, dst.data, (int)dst.step[0], dstroi, coeffs, mode) < 0)
*ok = false;
}
private:
Mat &src;
Mat &dst;
double (&coeffs)[3][3];
int mode;
int borderType;
const Scalar borderValue;
ippiWarpPerspectiveBackFunc func;
bool *ok;
const IPPwarpPerspectiveInvoker& operator= (const IPPwarpPerspectiveInvoker&);
};
#endif
}
void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
@@ -3629,6 +3891,50 @@ void cv::warpPerspective( InputArray _src, OutputArray _dst, InputArray _M0,
if( !(flags & WARP_INVERSE_MAP) )
invert(matM, matM);
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
int depth = src.depth();
int channels = src.channels();
if( ( depth == CV_8U || depth == CV_16U || depth == CV_32F ) &&
( channels == 1 || channels == 3 || channels == 4 ) &&
( borderType == cv::BORDER_TRANSPARENT || borderType == cv::BORDER_CONSTANT ) )
{
int type = src.type();
ippiWarpPerspectiveBackFunc ippFunc =
type == CV_8UC1 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_8u_C1R :
type == CV_8UC3 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_8u_C3R :
type == CV_8UC4 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_8u_C4R :
type == CV_16UC1 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_16u_C1R :
type == CV_16UC3 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_16u_C3R :
type == CV_16UC4 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_16u_C4R :
type == CV_32FC1 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_32f_C1R :
type == CV_32FC3 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_32f_C3R :
type == CV_32FC4 ? (ippiWarpPerspectiveBackFunc)ippiWarpPerspectiveBack_32f_C4R :
0;
int mode =
flags == INTER_LINEAR ? IPPI_INTER_LINEAR :
flags == INTER_NEAREST ? IPPI_INTER_NN :
flags == INTER_CUBIC ? IPPI_INTER_CUBIC :
0;
if( mode && ippFunc )
{
double coeffs[3][3];
for( int i = 0; i < 3; i++ )
{
for( int j = 0; j < 3; j++ )
{
coeffs[i][j] = matM.at<double>(i, j);
}
}
bool ok;
Range range(0, dst.rows);
IPPwarpPerspectiveInvoker invoker(src, dst, coeffs, mode, borderType, borderValue, ippFunc, &ok);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));
if( ok )
return;
}
}
#endif
Range range(0, dst.rows);
warpPerspectiveInvoker invoker(src, dst, M, interpolation, borderType, borderValue);
parallel_for_(range, invoker, dst.total()/(double)(1<<16));

View File

@@ -1213,11 +1213,10 @@ static bool IPPMorphReplicate(int op, const Mat &src, Mat &dst, const Mat &kerne
}
static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
InputArray _kernel,
const Point &anchor, int iterations,
const Mat& _kernel, Point anchor, int iterations,
int borderType, const Scalar &borderValue)
{
Mat src = _src.getMat(), kernel = _kernel.getMat();
Mat src = _src.getMat(), kernel = _kernel;
if( !( src.depth() == CV_8U || src.depth() == CV_32F ) || ( iterations > 1 ) ||
!( borderType == cv::BORDER_REPLICATE || (borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue()) )
|| !( op == MORPH_DILATE || op == MORPH_ERODE) )
@@ -1248,9 +1247,6 @@ static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
}
Size ksize = kernel.data ? kernel.size() : Size(3,3);
Point normanchor = normalizeAnchor(anchor, ksize);
CV_Assert( normanchor.inside(Rect(0, 0, ksize.width, ksize.height)) );
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
@@ -1265,7 +1261,7 @@ static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
if( !kernel.data )
{
ksize = Size(1+iterations*2,1+iterations*2);
normanchor = Point(iterations, iterations);
anchor = Point(iterations, iterations);
rectKernel = true;
iterations = 1;
}
@@ -1273,7 +1269,7 @@ static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
{
ksize = Size(ksize.width + (iterations-1)*(ksize.width-1),
ksize.height + (iterations-1)*(ksize.height-1)),
normanchor = Point(normanchor.x*iterations, normanchor.y*iterations);
anchor = Point(anchor.x*iterations, anchor.y*iterations);
kernel = Mat();
rectKernel = true;
iterations = 1;
@@ -1283,7 +1279,7 @@ static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
if( iterations > 1 )
return false;
return IPPMorphReplicate( op, src, dst, kernel, ksize, normanchor, rectKernel );
return IPPMorphReplicate( op, src, dst, kernel, ksize, anchor, rectKernel );
}
#endif
@@ -1292,18 +1288,19 @@ static void morphOp( int op, InputArray _src, OutputArray _dst,
Point anchor, int iterations,
int borderType, const Scalar& borderValue )
{
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if( IPPMorphOp(op, _src, _dst, _kernel, anchor, iterations, borderType, borderValue) )
return;
#endif
Mat src = _src.getMat(), kernel = _kernel.getMat();
Mat kernel = _kernel.getMat();
Size ksize = kernel.data ? kernel.size() : Size(3,3);
anchor = normalizeAnchor(anchor, ksize);
CV_Assert( anchor.inside(Rect(0, 0, ksize.width, ksize.height)) );
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if( IPPMorphOp(op, _src, _dst, kernel, anchor, iterations, borderType, borderValue) )
return;
#endif
Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();

View File

@@ -1879,6 +1879,41 @@ private:
float *space_weight, *color_weight;
};
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
class IPPBilateralFilter_8u_Invoker :
public ParallelLoopBody
{
public:
IPPBilateralFilter_8u_Invoker(Mat &_src, Mat &_dst, double _sigma_color, double _sigma_space, int _radius, bool *_ok) :
ParallelLoopBody(), src(_src), dst(_dst), sigma_color(_sigma_color), sigma_space(_sigma_space), radius(_radius), ok(_ok)
{
*ok = true;
}
virtual void operator() (const Range& range) const
{
int d = radius * 2 + 1;
IppiSize kernel = {d, d};
IppiSize roi={dst.cols, range.end - range.start};
int bufsize=0;
ippiFilterBilateralGetBufSize_8u_C1R( ippiFilterBilateralGauss, roi, kernel, &bufsize);
AutoBuffer<uchar> buf(bufsize);
IppiFilterBilateralSpec *pSpec = (IppiFilterBilateralSpec *)alignPtr(&buf[0], 32);
ippiFilterBilateralInit_8u_C1R( ippiFilterBilateralGauss, kernel, (Ipp32f)sigma_color, (Ipp32f)sigma_space, 1, pSpec );
if( ippiFilterBilateral_8u_C1R( src.ptr<uchar>(range.start) + radius * ((int)src.step[0] + 1), (int)src.step[0], dst.ptr<uchar>(range.start), (int)dst.step[0], roi, kernel, pSpec ) < 0)
*ok = false;
}
private:
Mat &src;
Mat &dst;
double sigma_color;
double sigma_space;
int radius;
bool *ok;
const IPPBilateralFilter_8u_Invoker& operator= (const IPPBilateralFilter_8u_Invoker&);
};
#endif
static void
bilateralFilter_8u( const Mat& src, Mat& dst, int d,
double sigma_color, double sigma_space,
@@ -1908,32 +1943,19 @@ bilateralFilter_8u( const Mat& src, Mat& dst, int d,
radius = MAX(radius, 1);
d = radius*2 + 1;
#if 0 && defined HAVE_IPP && (IPP_VERSION_MAJOR >= 7)
if(cn == 1)
{
IppiSize kernel = {d, d};
IppiSize roi={src.cols, src.rows};
int bufsize=0;
ippiFilterBilateralGetBufSize_8u_C1R( ippiFilterBilateralGauss, roi, kernel, &bufsize);
AutoBuffer<uchar> buf(bufsize+128);
IppiFilterBilateralSpec *pSpec = (IppiFilterBilateralSpec *)alignPtr(&buf[0], 32);
ippiFilterBilateralInit_8u_C1R( ippiFilterBilateralGauss, kernel, sigma_color*sigma_color, sigma_space*sigma_space, 1, pSpec );
Mat tsrc;
const Mat* psrc = &src;
if( src.data == dst.data )
{
src.copyTo(tsrc);
psrc = &tsrc;
}
if( ippiFilterBilateral_8u_C1R(psrc->data, (int)psrc->step[0],
dst.data, (int)dst.step[0],
roi, kernel, pSpec) >= 0 )
return;
}
#endif
Mat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
#if defined HAVE_IPP && (IPP_VERSION_MAJOR >= 7)
if( cn == 1 )
{
bool ok;
IPPBilateralFilter_8u_Invoker body(temp, dst, sigma_color * sigma_color, sigma_space * sigma_space, radius, &ok );
parallel_for_(Range(0, dst.rows), body, dst.total()/(double)(1<<16));
if( ok ) return;
}
#endif
std::vector<float> _color_weight(cn*256);
std::vector<float> _space_weight(d*d);
std::vector<int> _space_ofs(d*d);
@@ -2258,6 +2280,236 @@ void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d,
"Bilateral filtering is only implemented for 8u and 32f images" );
}
/****************************************************************************************\
Adaptive Bilateral Filtering
\****************************************************************************************/
namespace cv
{
#define CALCVAR 1
#define FIXED_WEIGHT 0
class adaptiveBilateralFilter_8u_Invoker :
public ParallelLoopBody
{
public:
adaptiveBilateralFilter_8u_Invoker(Mat& _dest, const Mat& _temp, Size _ksize, double _sigma_space, Point _anchor) :
temp(&_temp), dest(&_dest), ksize(_ksize), sigma_space(_sigma_space), anchor(_anchor)
{
if( sigma_space <= 0 )
sigma_space = 1;
CV_Assert((ksize.width & 1) && (ksize.height & 1));
space_weight.resize(ksize.width * ksize.height);
double sigma2 = sigma_space * sigma_space;
int idx = 0;
int w = ksize.width / 2;
int h = ksize.height / 2;
for(int y=-h; y<=h; y++)
for(int x=-w; x<=w; x++)
{
space_weight[idx++] = (float)(sigma2 / (sigma2 + x * x + y * y));
}
}
virtual void operator()(const Range& range) const
{
int cn = dest->channels();
int anX = anchor.x;
const uchar *tptr;
for(int i = range.start;i < range.end; i++)
{
int startY = i;
if(cn == 1)
{
float var;
int currVal;
int sumVal = 0;
int sumValSqr = 0;
int currValCenter;
int currWRTCenter;
float weight;
float totalWeight = 0.;
float tmpSum = 0.;
for(int j = 0;j < dest->cols *cn; j+=cn)
{
sumVal = 0;
sumValSqr= 0;
totalWeight = 0.;
tmpSum = 0.;
// Top row: don't sum the very last element
int startLMJ = 0;
int endLMJ = ksize.width - 1;
int howManyAll = (anX *2 +1)*(ksize.width );
#if CALCVAR
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
currVal = tptr[cn*(y+anX)];
sumVal += currVal;
sumValSqr += (currVal *currVal);
}
}
var = ( (sumValSqr * howManyAll)- sumVal * sumVal ) / ( (float)(howManyAll*howManyAll));
#else
var = 900.0;
#endif
startLMJ = 0;
endLMJ = ksize.width;
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2);
currValCenter =tptr[j+cn*anX];
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
#if FIXED_WEIGHT
weight = 1.0;
#else
currVal = tptr[cn*(y+anX)];
currWRTCenter = currVal - currValCenter;
weight = var / ( var + (currWRTCenter * currWRTCenter) ) * space_weight[x*ksize.width+y+anX];;
#endif
tmpSum += ((float)tptr[cn*(y+anX)] * weight);
totalWeight += weight;
}
}
tmpSum /= totalWeight;
dest->at<uchar>(startY ,j)= static_cast<uchar>(tmpSum);
}
}
else
{
assert(cn == 3);
float var_b, var_g, var_r;
int currVal_b, currVal_g, currVal_r;
int sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
int sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
int currValCenter_b= 0, currValCenter_g= 0, currValCenter_r= 0;
int currWRTCenter_b, currWRTCenter_g, currWRTCenter_r;
float weight_b, weight_g, weight_r;
float totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
float tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
for(int j = 0;j < dest->cols *cn; j+=cn)
{
sumVal_b= 0, sumVal_g= 0, sumVal_r= 0;
sumValSqr_b= 0, sumValSqr_g= 0, sumValSqr_r= 0;
totalWeight_b= 0., totalWeight_g= 0., totalWeight_r= 0.;
tmpSum_b = 0., tmpSum_g= 0., tmpSum_r = 0.;
// Top row: don't sum the very last element
int startLMJ = 0;
int endLMJ = ksize.width - 1;
int howManyAll = (anX *2 +1)*(ksize.width);
#if CALCVAR
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
currVal_b = tptr[cn*(y+anX)], currVal_g = tptr[cn*(y+anX)+1], currVal_r =tptr[cn*(y+anX)+2];
sumVal_b += currVal_b;
sumVal_g += currVal_g;
sumVal_r += currVal_r;
sumValSqr_b += (currVal_b *currVal_b);
sumValSqr_g += (currVal_g *currVal_g);
sumValSqr_r += (currVal_r *currVal_r);
}
}
var_b = ( (sumValSqr_b * howManyAll)- sumVal_b * sumVal_b ) / ( (float)(howManyAll*howManyAll));
var_g = ( (sumValSqr_g * howManyAll)- sumVal_g * sumVal_g ) / ( (float)(howManyAll*howManyAll));
var_r = ( (sumValSqr_r * howManyAll)- sumVal_r * sumVal_r ) / ( (float)(howManyAll*howManyAll));
#else
var_b = 900.0; var_g = 900.0;var_r = 900.0;
#endif
startLMJ = 0;
endLMJ = ksize.width;
tptr = temp->ptr(startY + (startLMJ+ endLMJ)/2) + j;
currValCenter_b =tptr[cn*anX], currValCenter_g =tptr[cn*anX+1], currValCenter_r =tptr[cn*anX+2];
for(int x = startLMJ; x< endLMJ; x++)
{
tptr = temp->ptr(startY + x) +j;
for(int y=-anX; y<=anX; y++)
{
#if FIXED_WEIGHT
weight_b = 1.0;
weight_g = 1.0;
weight_r = 1.0;
#else
currVal_b = tptr[cn*(y+anX)];currVal_g=tptr[cn*(y+anX)+1];currVal_r=tptr[cn*(y+anX)+2];
currWRTCenter_b = currVal_b - currValCenter_b;
currWRTCenter_g = currVal_g - currValCenter_g;
currWRTCenter_r = currVal_r - currValCenter_r;
float cur_spw = space_weight[x*ksize.width+y+anX];
weight_b = var_b / ( var_b + (currWRTCenter_b * currWRTCenter_b) ) * cur_spw;
weight_g = var_g / ( var_g + (currWRTCenter_g * currWRTCenter_g) ) * cur_spw;
weight_r = var_r / ( var_r + (currWRTCenter_r * currWRTCenter_r) ) * cur_spw;
#endif
tmpSum_b += ((float)tptr[cn*(y+anX)] * weight_b);
tmpSum_g += ((float)tptr[cn*(y+anX)+1] * weight_g);
tmpSum_r += ((float)tptr[cn*(y+anX)+2] * weight_r);
totalWeight_b += weight_b, totalWeight_g += weight_g, totalWeight_r += weight_r;
}
}
tmpSum_b /= totalWeight_b;
tmpSum_g /= totalWeight_g;
tmpSum_r /= totalWeight_r;
dest->at<uchar>(startY,j )= static_cast<uchar>(tmpSum_b);
dest->at<uchar>(startY,j+1)= static_cast<uchar>(tmpSum_g);
dest->at<uchar>(startY,j+2)= static_cast<uchar>(tmpSum_r);
}
}
}
}
private:
const Mat *temp;
Mat *dest;
Size ksize;
double sigma_space;
Point anchor;
std::vector<float> space_weight;
};
static void adaptiveBilateralFilter_8u( const Mat& src, Mat& dst, Size ksize, double sigmaSpace, Point anchor, int borderType )
{
Size size = src.size();
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
Mat temp;
copyMakeBorder(src, temp, anchor.x, anchor.y, anchor.x, anchor.y, borderType);
adaptiveBilateralFilter_8u_Invoker body(dst, temp, ksize, sigmaSpace, anchor);
parallel_for_(Range(0, size.height), body, dst.total()/(double)(1<<16));
}
}
void cv::adaptiveBilateralFilter( InputArray _src, OutputArray _dst, Size ksize,
double sigmaSpace, Point anchor, int borderType )
{
Mat src = _src.getMat();
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
anchor = normalizeAnchor(anchor,ksize);
if( src.depth() == CV_8U )
adaptiveBilateralFilter_8u( src, dst, ksize, sigmaSpace, anchor, borderType );
else
CV_Error( CV_StsUnsupportedFormat,
"Adaptive Bilateral filtering is only implemented for 8u images" );
}
//////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void