Capitalize macro namings.
This commit is contained in:
parent
1bea9ee26c
commit
2338a895f5
@ -78,7 +78,7 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d -D max_desc_len=%d", distType, block_size, m_size);
|
||||
sprintf(opt, "-D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", distType, block_size, m_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
@ -119,7 +119,7 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d", distType, block_size);
|
||||
sprintf(opt, "-D DIST_TYPE=%d -D BLOCK_SIZE=%d", distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
@ -162,7 +162,7 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d -D max_desc_len=%d", distType, block_size, m_size);
|
||||
sprintf(opt, "-D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", distType, block_size, m_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
@ -202,7 +202,7 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d", distType, block_size);
|
||||
sprintf(opt, "-D DIST_TYPE=%d -D BLOCK_SIZE=%d", distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
@ -300,7 +300,7 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d -D max_desc_len=%d", distType, block_size, m_size);
|
||||
sprintf(opt, "-D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", distType, block_size, m_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
@ -334,7 +334,7 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d -D block_size=%d", distType, block_size);
|
||||
sprintf(opt, "-D DIST_TYPE=%d -D BLOCK_SIZE=%d", distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
@ -368,7 +368,7 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d", distType);
|
||||
sprintf(opt, "-D DIST_TYPE=%d", distType);
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -401,7 +401,7 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
|
||||
vector< pair<size_t, const void *> > args;
|
||||
|
||||
char opt [OPT_SIZE] = "";
|
||||
sprintf(opt, "-D distType=%d", distType);
|
||||
sprintf(opt, "-D DIST_TYPE=%d", distType);
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
|
@ -47,11 +47,11 @@
|
||||
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable
|
||||
#define MAX_FLOAT 3.40282e+038f
|
||||
|
||||
#ifndef block_size
|
||||
#define block_size 16
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE 16
|
||||
#endif
|
||||
#ifndef max_desc_len
|
||||
#define max_desc_len 64
|
||||
#ifndef MAX_DESC_LEN
|
||||
#define MAX_DESC_LEN 64
|
||||
#endif
|
||||
|
||||
int bit1Count(float x)
|
||||
@ -66,15 +66,15 @@ int bit1Count(float x)
|
||||
return (float)c;
|
||||
}
|
||||
|
||||
#ifndef distType
|
||||
#define distType 0
|
||||
#ifndef DIST_TYPE
|
||||
#define DIST_TYPE 0
|
||||
#endif
|
||||
|
||||
#if (distType == 0)
|
||||
#if (DIST_TYPE == 0)
|
||||
#define DIST(x, y) fabs((x) - (y))
|
||||
#elif (distType == 1)
|
||||
#elif (DIST_TYPE == 1)
|
||||
#define DIST(x, y) (((x) - (y)) * ((x) - (y)))
|
||||
#elif (distType == 2)
|
||||
#elif (DIST_TYPE == 2)
|
||||
#define DIST(x, y) bit1Count((uint)(x) ^ (uint)(y))
|
||||
#endif
|
||||
|
||||
@ -87,9 +87,9 @@ float reduce_block(__local float *s_query,
|
||||
{
|
||||
float result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(s_query[lidy * block_size + j], s_train[j * block_size + lidx]);
|
||||
result += DIST(s_query[lidy * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@ -103,15 +103,15 @@ float reduce_multi_block(__local float *s_query,
|
||||
{
|
||||
float result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < block_size ; j++)
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(s_query[lidy * max_desc_len + block_index * block_size + j], s_train[j * block_size + lidx]);
|
||||
result += DIST(s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* 2dim launch, global size: dim0 is (query rows + block_size - 1) / block_size * block_size, dim1 is block_size
|
||||
local size: dim0 is block_size, dim1 is block_size.
|
||||
/* 2dim launch, global size: dim0 is (query rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, dim1 is BLOCK_SIZE
|
||||
local size: dim0 is BLOCK_SIZE, dim1 is BLOCK_SIZE.
|
||||
*/
|
||||
__kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
__global float *query,
|
||||
@ -133,15 +133,15 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + block_size * max_desc_len;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
int queryIdx = groupidx * block_size + lidy;
|
||||
int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
// load the query into local memory.
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < max_desc_len / block_size; i ++)
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
{
|
||||
int loadx = lidx + i * block_size;
|
||||
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
}
|
||||
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
@ -149,15 +149,15 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
|
||||
// loopUnrolledCached to find the best trainIdx and best distance.
|
||||
volatile int imgIdx = 0;
|
||||
for (int t = 0, endt = (train_rows + block_size - 1) / block_size; t < endt; t++)
|
||||
for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++)
|
||||
{
|
||||
float result = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
//load a block_size * block_size block into local train.
|
||||
const int loadx = lidx + i * block_size;
|
||||
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -167,7 +167,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
int trainIdx = t * block_size + lidx;
|
||||
int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
@ -179,11 +179,11 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__local float *s_distance = (__local float*)(sharebuffer);
|
||||
__local int* s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
||||
__local int* s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//find BestMatch
|
||||
s_distance += lidy * block_size;
|
||||
s_trainIdx += lidy * block_size;
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
s_distance[lidx] = myBestDistance;
|
||||
s_trainIdx[lidx] = myBestTrainIdx;
|
||||
|
||||
@ -191,7 +191,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
|
||||
//reduce -- now all reduce implement in each threads.
|
||||
#pragma unroll
|
||||
for (int k = 0 ; k < block_size; k++)
|
||||
for (int k = 0 ; k < BLOCK_SIZE; k++)
|
||||
{
|
||||
if (myBestDistance > s_distance[k])
|
||||
{
|
||||
@ -225,30 +225,30 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * block_size + lidy;
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
int myBestTrainIdx = -1;
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + block_size * block_size;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
// loop
|
||||
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
//Dist dist;
|
||||
float result = 0;
|
||||
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; i++)
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * block_size;
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
//load query and train into local memory
|
||||
s_query[lidy * block_size + lidx] = 0;
|
||||
s_train[lidx * block_size + lidy] = 0;
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = 0;
|
||||
|
||||
if (loadx < query_cols)
|
||||
{
|
||||
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -258,7 +258,7 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int trainIdx = t * block_size + lidx;
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
@ -271,18 +271,18 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (__local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//findBestMatch
|
||||
s_distance += lidy * block_size;
|
||||
s_trainIdx += lidy * block_size;
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
s_distance[lidx] = myBestDistance;
|
||||
s_trainIdx[lidx] = myBestTrainIdx;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//reduce -- now all reduce implement in each threads.
|
||||
for (int k = 0 ; k < block_size; k++)
|
||||
for (int k = 0 ; k < BLOCK_SIZE; k++)
|
||||
{
|
||||
if (myBestDistance > s_distance[k])
|
||||
{
|
||||
@ -322,20 +322,20 @@ __kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||
const int groupidx = get_group_id(0);
|
||||
const int groupidy = get_group_id(1);
|
||||
|
||||
const int queryIdx = groupidy * block_size + lidy;
|
||||
const int trainIdx = groupidx * block_size + lidx;
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + block_size * block_size;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float result = 0;
|
||||
for (int i = 0 ; i < max_desc_len / block_size ; ++i)
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a block_size * block_size block into local train.
|
||||
const int loadx = lidx + i * block_size;
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
|
||||
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -382,20 +382,20 @@ __kernel void BruteForceMatch_RadiusMatch_D5(
|
||||
const int groupidx = get_group_id(0);
|
||||
const int groupidy = get_group_id(1);
|
||||
|
||||
const int queryIdx = groupidy * block_size + lidy;
|
||||
const int trainIdx = groupidx * block_size + lidx;
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + block_size * block_size;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float result = 0;
|
||||
for (int i = 0 ; i < (query_cols + block_size - 1) / block_size ; ++i)
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a block_size * block_size block into local train.
|
||||
const int loadx = lidx + i * block_size;
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
|
||||
s_query[lidy * block_size + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * block_size + lidy] = loadx < query_cols ? train[min(groupidx * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -437,15 +437,15 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * block_size + lidy;
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
local float *s_query = sharebuffer;
|
||||
local float *s_train = sharebuffer + block_size * max_desc_len;
|
||||
local float *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
// load the query into local memory.
|
||||
for (int i = 0 ; i < max_desc_len / block_size; i ++)
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
{
|
||||
int loadx = lidx + i * block_size;
|
||||
s_query[lidy * max_desc_len + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
}
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
@ -455,15 +455,15 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
|
||||
//loopUnrolledCached
|
||||
volatile int imgIdx = 0;
|
||||
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
float result = 0;
|
||||
for (int i = 0 ; i < max_desc_len / block_size ; i++)
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadX = lidx + i * block_size;
|
||||
//load a block_size * block_size block into local train.
|
||||
const int loadx = lidx + i * block_size;
|
||||
s_train[lidx * block_size + lidy] = loadx < train_cols ? train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
const int loadX = lidx + i * BLOCK_SIZE;
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -473,7 +473,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int trainIdx = t * block_size + lidx;
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows)
|
||||
{
|
||||
@ -495,11 +495,11 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
local float *s_distance = (local float *)sharebuffer;
|
||||
local int *s_trainIdx = (local int *)(sharebuffer + block_size * block_size);
|
||||
local int *s_trainIdx = (local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
// find BestMatch
|
||||
s_distance += lidy * block_size;
|
||||
s_trainIdx += lidy * block_size;
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
|
||||
s_distance[lidx] = myBestDistance1;
|
||||
s_trainIdx[lidx] = myBestTrainIdx1;
|
||||
@ -512,7 +512,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < block_size ; i++)
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
if (val < bestDistance1)
|
||||
@ -540,7 +540,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < block_size ; i++)
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
|
||||
@ -583,9 +583,9 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * block_size + lidy;
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
local float *s_query = sharebuffer;
|
||||
local float *s_train = sharebuffer + block_size * block_size;
|
||||
local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
float myBestDistance2 = MAX_FLOAT;
|
||||
@ -593,20 +593,20 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
int myBestTrainIdx2 = -1;
|
||||
|
||||
//loop
|
||||
for (int t = 0 ; t < (train_rows + block_size - 1) / block_size ; t++)
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
float result = 0.0f;
|
||||
for (int i = 0 ; i < (query_cols + block_size -1) / block_size ; i++)
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * block_size;
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
//load query and train into local memory
|
||||
s_query[lidy * block_size + lidx] = 0;
|
||||
s_train[lidx * block_size + lidy] = 0;
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = 0;
|
||||
|
||||
if (loadx < query_cols)
|
||||
{
|
||||
s_query[lidy * block_size + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * block_size + lidy] = train[min(t * block_size + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -616,7 +616,7 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int trainIdx = t * block_size + lidx;
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows /*&& mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
@ -638,11 +638,11 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (__local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + block_size * block_size);
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//findBestMatch
|
||||
s_distance += lidy * block_size;
|
||||
s_trainIdx += lidy * block_size;
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
|
||||
s_distance[lidx] = myBestDistance1;
|
||||
s_trainIdx[lidx] = myBestTrainIdx1;
|
||||
@ -655,7 +655,7 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < block_size ; i++)
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
if (val < bestDistance1)
|
||||
@ -683,7 +683,7 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < block_size ; i++)
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user