Merge pull request #5691 from paroj:levmarqLU
This commit is contained in:
commit
21b415f6be
41
modules/calib3d/doc/calib3d.bib
Normal file
41
modules/calib3d/doc/calib3d.bib
Normal file
@ -0,0 +1,41 @@
|
||||
@article{lepetit2009epnp,
|
||||
title={Epnp: An accurate o (n) solution to the pnp problem},
|
||||
author={Lepetit, Vincent and Moreno-Noguer, Francesc and Fua, Pascal},
|
||||
journal={International journal of computer vision},
|
||||
volume={81},
|
||||
number={2},
|
||||
pages={155--166},
|
||||
year={2009},
|
||||
publisher={Springer}
|
||||
}
|
||||
|
||||
@article{gao2003complete,
|
||||
title={Complete solution classification for the perspective-three-point problem},
|
||||
author={Gao, Xiao-Shan and Hou, Xiao-Rong and Tang, Jianliang and Cheng, Hang-Fei},
|
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on},
|
||||
volume={25},
|
||||
number={8},
|
||||
pages={930--943},
|
||||
year={2003},
|
||||
publisher={IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{hesch2011direct,
|
||||
title={A direct least-squares (DLS) method for PnP},
|
||||
author={Hesch, Joel and Roumeliotis, Stergios and others},
|
||||
booktitle={Computer Vision (ICCV), 2011 IEEE International Conference on},
|
||||
pages={383--390},
|
||||
year={2011},
|
||||
organization={IEEE}
|
||||
}
|
||||
|
||||
@article{penate2013exhaustive,
|
||||
title={Exhaustive linearization for robust camera pose and focal length estimation},
|
||||
author={Penate-Sanchez, Adrian and Andrade-Cetto, Juan and Moreno-Noguer, Francesc},
|
||||
journal={Pattern Analysis and Machine Intelligence, IEEE Transactions on},
|
||||
volume={35},
|
||||
number={10},
|
||||
pages={2387--2400},
|
||||
year={2013},
|
||||
publisher={IEEE}
|
||||
}
|
@ -189,10 +189,10 @@ enum { LMEDS = 4, //!< least-median algorithm
|
||||
};
|
||||
|
||||
enum { SOLVEPNP_ITERATIVE = 0,
|
||||
SOLVEPNP_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
|
||||
SOLVEPNP_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
||||
SOLVEPNP_DLS = 3, // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"
|
||||
SOLVEPNP_UPNP = 4 // A.Penate-Sanchez, J.Andrade-Cetto, F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation"
|
||||
SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
|
||||
SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
|
||||
SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
|
||||
SOLVEPNP_UPNP = 4 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
|
||||
|
||||
};
|
||||
|
||||
@ -225,7 +225,8 @@ enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
|
||||
CALIB_FIX_INTRINSIC = 0x00100,
|
||||
CALIB_SAME_FOCAL_LENGTH = 0x00200,
|
||||
// for stereo rectification
|
||||
CALIB_ZERO_DISPARITY = 0x00400
|
||||
CALIB_ZERO_DISPARITY = 0x00400,
|
||||
CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
|
||||
};
|
||||
|
||||
//! the algorithm for finding fundamental matrix
|
||||
|
@ -415,6 +415,7 @@ public:
|
||||
int state;
|
||||
int iters;
|
||||
bool completeSymmFlag;
|
||||
int solveMethod;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
@ -1232,7 +1232,6 @@ CV_IMPL double cvCalibrateCamera2( const CvMat* objectPoints,
|
||||
CvMat* rvecs, CvMat* tvecs, int flags, CvTermCriteria termCrit )
|
||||
{
|
||||
const int NINTRINSIC = 16;
|
||||
CvLevMarq solver;
|
||||
double reprojErr = 0;
|
||||
|
||||
Matx33d A;
|
||||
@ -1388,7 +1387,11 @@ CV_IMPL double cvCalibrateCamera2( const CvMat* objectPoints,
|
||||
cvInitIntrinsicParams2D( &_matM, &m, npoints, imageSize, &matA, aspectRatio );
|
||||
}
|
||||
|
||||
solver.init( nparams, 0, termCrit );
|
||||
CvLevMarq solver( nparams, 0, termCrit );
|
||||
|
||||
if(flags & CALIB_USE_LU) {
|
||||
solver.solveMethod = DECOMP_LU;
|
||||
}
|
||||
|
||||
{
|
||||
double* param = solver.param->data.db;
|
||||
@ -1635,7 +1638,6 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
|
||||
{
|
||||
const int NINTRINSIC = 16;
|
||||
Ptr<CvMat> npoints, err, J_LR, Je, Ji, imagePoints[2], objectPoints, RT0;
|
||||
CvLevMarq solver;
|
||||
double reprojErr = 0;
|
||||
|
||||
double A[2][9], dk[2][12]={{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0}}, rlr[9];
|
||||
@ -1737,7 +1739,12 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
|
||||
// storage for initial [om(R){i}|t{i}] (in order to compute the median for each component)
|
||||
RT0.reset(cvCreateMat( 6, nimages, CV_64F ));
|
||||
|
||||
solver.init( nparams, 0, termCrit );
|
||||
CvLevMarq solver( nparams, 0, termCrit );
|
||||
|
||||
if(flags & CALIB_USE_LU) {
|
||||
solver.solveMethod = DECOMP_LU;
|
||||
}
|
||||
|
||||
if( recomputeIntrinsics )
|
||||
{
|
||||
uchar* imask = solver.mask->data.ptr + nparams - NINTRINSIC*2;
|
||||
|
@ -58,6 +58,7 @@ CvLevMarq::CvLevMarq()
|
||||
iters = 0;
|
||||
completeSymmFlag = false;
|
||||
errNorm = prevErrNorm = DBL_MAX;
|
||||
solveMethod = cv::DECOMP_SVD;
|
||||
}
|
||||
|
||||
CvLevMarq::CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag )
|
||||
@ -93,9 +94,6 @@ void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _co
|
||||
prevParam.reset(cvCreateMat( nparams, 1, CV_64F ));
|
||||
param.reset(cvCreateMat( nparams, 1, CV_64F ));
|
||||
JtJ.reset(cvCreateMat( nparams, nparams, CV_64F ));
|
||||
JtJN.reset(cvCreateMat( nparams, nparams, CV_64F ));
|
||||
JtJV.reset(cvCreateMat( nparams, nparams, CV_64F ));
|
||||
JtJW.reset(cvCreateMat( nparams, 1, CV_64F ));
|
||||
JtErr.reset(cvCreateMat( nparams, 1, CV_64F ));
|
||||
if( nerrs > 0 )
|
||||
{
|
||||
@ -116,6 +114,7 @@ void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _co
|
||||
state = STARTED;
|
||||
iters = 0;
|
||||
completeSymmFlag = _completeSymmFlag;
|
||||
solveMethod = cv::DECOMP_SVD;
|
||||
}
|
||||
|
||||
bool CvLevMarq::update( const CvMat*& _param, CvMat*& matJ, CvMat*& _err )
|
||||
@ -256,6 +255,34 @@ bool CvLevMarq::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, d
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace {
|
||||
static void subMatrix(const cv::Mat& src, cv::Mat& dst, const std::vector<uchar>& cols,
|
||||
const std::vector<uchar>& rows) {
|
||||
int nonzeros_cols = cv::countNonZero(cols);
|
||||
cv::Mat tmp(src.rows, nonzeros_cols, CV_64FC1);
|
||||
|
||||
for (int i = 0, j = 0; i < (int)cols.size(); i++)
|
||||
{
|
||||
if (cols[i])
|
||||
{
|
||||
src.col(i).copyTo(tmp.col(j++));
|
||||
}
|
||||
}
|
||||
|
||||
int nonzeros_rows = cv::countNonZero(rows);
|
||||
dst.create(nonzeros_rows, nonzeros_cols, CV_64FC1);
|
||||
for (int i = 0, j = 0; i < (int)rows.size(); i++)
|
||||
{
|
||||
if (rows[i])
|
||||
{
|
||||
tmp.row(i).copyTo(dst.row(j++));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void CvLevMarq::step()
|
||||
{
|
||||
using namespace cv;
|
||||
@ -264,33 +291,36 @@ void CvLevMarq::step()
|
||||
int nparams = param->rows;
|
||||
|
||||
Mat _JtJ = cvarrToMat(JtJ);
|
||||
Mat _JtJN = cvarrToMat(JtJN);
|
||||
Mat _JtJW = cvarrToMat(JtJW);
|
||||
Mat _JtJV = cvarrToMat(JtJV);
|
||||
Mat _mask = cvarrToMat(mask);
|
||||
|
||||
for( int i = 0; i < nparams; i++ )
|
||||
if( mask->data.ptr[i] == 0 )
|
||||
{
|
||||
_JtJ.row(i) = 0;
|
||||
_JtJ.col(i) = 0;
|
||||
JtErr->data.db[i] = 0;
|
||||
}
|
||||
int nparams_nz = countNonZero(_mask);
|
||||
if(!JtJN || JtJN->rows != nparams_nz) {
|
||||
// prevent re-allocation in every step
|
||||
JtJN.reset(cvCreateMat( nparams_nz, nparams_nz, CV_64F ));
|
||||
JtJV.reset(cvCreateMat( nparams_nz, 1, CV_64F ));
|
||||
JtJW.reset(cvCreateMat( nparams_nz, 1, CV_64F ));
|
||||
}
|
||||
|
||||
Mat _JtJN = cvarrToMat(JtJN);
|
||||
Mat _JtErr = cvarrToMat(JtJV);
|
||||
Mat_<double> nonzero_param = cvarrToMat(JtJW);
|
||||
|
||||
subMatrix(cvarrToMat(JtErr), _JtErr, std::vector<uchar>(1, 1), _mask);
|
||||
subMatrix(_JtJ, _JtJN, _mask, _mask);
|
||||
|
||||
if( !err )
|
||||
completeSymm( _JtJ, completeSymmFlag );
|
||||
completeSymm( _JtJN, completeSymmFlag );
|
||||
|
||||
_JtJ.copyTo(_JtJN);
|
||||
#if 1
|
||||
_JtJN.diag() *= 1. + lambda;
|
||||
#else
|
||||
_JtJN.diag() += lambda;
|
||||
#endif
|
||||
// solve(JtJN, JtErr, param, DECOMP_SVD);
|
||||
SVD::compute(_JtJN, _JtJW, noArray(), _JtJV, SVD::MODIFY_A);
|
||||
SVD::backSubst(_JtJW, _JtJV.t(), _JtJV, cvarrToMat(JtErr), cvarrToMat(param));
|
||||
solve(_JtJN, _JtErr, nonzero_param, solveMethod);
|
||||
|
||||
int j = 0;
|
||||
for( int i = 0; i < nparams; i++ )
|
||||
param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? param->data.db[i] : 0);
|
||||
param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? nonzero_param(j++) : 0);
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user