a lot of small corrections to bring down the number of undocumented functions, reported by the script; added em.cpp sample
This commit is contained in:
94
samples/cpp/em.cpp
Normal file
94
samples/cpp/em.cpp
Normal file
@@ -0,0 +1,94 @@
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
const int N = 4;
|
||||
const int N1 = (int)sqrt((double)N);
|
||||
const Scalar colors[] =
|
||||
{
|
||||
Scalar(0,0,255), Scalar(0,255,0),
|
||||
Scalar(0,255,255),Scalar(255,255,0)
|
||||
};
|
||||
|
||||
int i, j;
|
||||
int nsamples = 100;
|
||||
Mat samples( nsamples, 2, CV_32FC1 );
|
||||
Mat labels;
|
||||
Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
|
||||
Mat sample( 1, 2, CV_32FC1 );
|
||||
CvEM em_model;
|
||||
CvEMParams params;
|
||||
|
||||
samples = samples.reshape(2, 0);
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
// form the training samples
|
||||
Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );
|
||||
|
||||
Scalar mean(((i%N1)+1)*img.rows/(N1+1),
|
||||
((i/N1)+1)*img.rows/(N1+1));
|
||||
Scalar sigma(30,30);
|
||||
randn( samples_part, mean, sigma );
|
||||
}
|
||||
samples = samples.reshape(1, 0);
|
||||
|
||||
// initialize model parameters
|
||||
params.covs = NULL;
|
||||
params.means = NULL;
|
||||
params.weights = NULL;
|
||||
params.probs = NULL;
|
||||
params.nclusters = N;
|
||||
params.cov_mat_type = CvEM::COV_MAT_SPHERICAL;
|
||||
params.start_step = CvEM::START_AUTO_STEP;
|
||||
params.term_crit.max_iter = 300;
|
||||
params.term_crit.epsilon = 0.1;
|
||||
params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
|
||||
|
||||
// cluster the data
|
||||
em_model.train( samples, Mat(), params, &labels );
|
||||
|
||||
#if 0
|
||||
// the piece of code shows how to repeatedly optimize the model
|
||||
// with less-constrained parameters
|
||||
//(COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL)
|
||||
// when the output of the first stage is used as input for the second one.
|
||||
CvEM em_model2;
|
||||
params.cov_mat_type = CvEM::COV_MAT_DIAGONAL;
|
||||
params.start_step = CvEM::START_E_STEP;
|
||||
params.means = em_model.get_means();
|
||||
params.covs = (const CvMat**)em_model.get_covs();
|
||||
params.weights = em_model.get_weights();
|
||||
|
||||
em_model2.train( samples, Mat(), params, &labels );
|
||||
// to use em_model2, replace em_model.predict()
|
||||
// with em_model2.predict() below
|
||||
#endif
|
||||
// classify every image pixel
|
||||
for( i = 0; i < img.rows; i++ )
|
||||
{
|
||||
for( j = 0; j < img.cols; j++ )
|
||||
{
|
||||
sample.at<float>(0) = (float)j;
|
||||
sample.at<float>(1) = (float)i;
|
||||
int response = cvRound(em_model.predict( sample ));
|
||||
Scalar c = colors[response];
|
||||
|
||||
circle( img, Point(j, i), 1, c*0.75, CV_FILLED );
|
||||
}
|
||||
}
|
||||
|
||||
//draw the clustered samples
|
||||
for( i = 0; i < nsamples; i++ )
|
||||
{
|
||||
Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1)));
|
||||
circle( img, pt, 1, colors[labels.at<int>(i)], CV_FILLED );
|
||||
}
|
||||
|
||||
imshow( "EM-clustering result", img );
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user