new/improved Python samples by Alexander Mordvintsev
This commit is contained in:
parent
2c2d6fa5fd
commit
2013118971
@ -6,6 +6,12 @@ import itertools as it
|
|||||||
|
|
||||||
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
|
||||||
|
|
||||||
|
class Bunch(object):
|
||||||
|
def __init__(self, **kw):
|
||||||
|
self.__dict__.update(kw)
|
||||||
|
def __str__(self):
|
||||||
|
return str(self.__dict__)
|
||||||
|
|
||||||
def splitfn(fn):
|
def splitfn(fn):
|
||||||
path, fn = os.path.split(fn)
|
path, fn = os.path.split(fn)
|
||||||
name, ext = os.path.splitext(fn)
|
name, ext = os.path.splitext(fn)
|
||||||
@ -198,3 +204,9 @@ def getsize(img):
|
|||||||
|
|
||||||
def mdot(*args):
|
def mdot(*args):
|
||||||
return reduce(np.dot, args)
|
return reduce(np.dot, args)
|
||||||
|
|
||||||
|
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
||||||
|
for kp in keypoints:
|
||||||
|
x, y = kp.pt
|
||||||
|
cv2.circle(vis, (int(x), int(y)), 2, color)
|
||||||
|
|
||||||
|
@ -3,128 +3,44 @@ Feature homography
|
|||||||
==================
|
==================
|
||||||
|
|
||||||
Example of using features2d framework for interactive video homography matching.
|
Example of using features2d framework for interactive video homography matching.
|
||||||
ORB features and FLANN matcher are used.
|
ORB features and FLANN matcher are used. The actual tracking is implemented by
|
||||||
|
PlaneTracker class in plane_tracker.py
|
||||||
|
|
||||||
Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY
|
Inspired by http://www.youtube.com/watch?v=-ZNYoL8rzPY
|
||||||
|
|
||||||
|
video: http://www.youtube.com/watch?v=FirtmYcC0Vc
|
||||||
|
|
||||||
Usage
|
Usage
|
||||||
-----
|
-----
|
||||||
feature_homography.py [<video source>]
|
feature_homography.py [<video source>]
|
||||||
|
|
||||||
Select a textured planar object to track by drawing a box with a mouse.
|
Keys:
|
||||||
|
SPACE - pause video
|
||||||
|
|
||||||
|
Select a textured planar object to track by drawing a box with a mouse.
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
import video
|
import video
|
||||||
import common
|
import common
|
||||||
from collections import namedtuple
|
from common import getsize, draw_keypoints
|
||||||
from common import getsize
|
from plane_tracker import PlaneTracker
|
||||||
|
|
||||||
|
|
||||||
FLANN_INDEX_KDTREE = 1
|
|
||||||
FLANN_INDEX_LSH = 6
|
|
||||||
flann_params= dict(algorithm = FLANN_INDEX_LSH,
|
|
||||||
table_number = 6, # 12
|
|
||||||
key_size = 12, # 20
|
|
||||||
multi_probe_level = 1) #2
|
|
||||||
|
|
||||||
MIN_MATCH_COUNT = 10
|
|
||||||
|
|
||||||
|
|
||||||
ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0],
|
|
||||||
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1],
|
|
||||||
[0.5, 0.5, 2]])
|
|
||||||
ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
|
|
||||||
(4, 5), (5, 6), (6, 7), (7, 4),
|
|
||||||
(0, 4), (1, 5), (2, 6), (3, 7),
|
|
||||||
(4, 8), (5, 8), (6, 8), (7, 8)]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
|
||||||
for kp in keypoints:
|
|
||||||
x, y = kp.pt
|
|
||||||
cv2.circle(vis, (int(x), int(y)), 2, color)
|
|
||||||
|
|
||||||
class App:
|
class App:
|
||||||
def __init__(self, src):
|
def __init__(self, src):
|
||||||
self.cap = video.create_capture(src)
|
self.cap = video.create_capture(src)
|
||||||
self.frame = None
|
self.frame = None
|
||||||
self.paused = False
|
self.paused = False
|
||||||
self.ref_frame = None
|
self.tracker = PlaneTracker()
|
||||||
|
|
||||||
self.detector = cv2.ORB( nfeatures = 1000 )
|
|
||||||
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
|
||||||
|
|
||||||
cv2.namedWindow('plane')
|
cv2.namedWindow('plane')
|
||||||
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||||
|
|
||||||
|
|
||||||
def match_frames(self):
|
|
||||||
if len(self.frame_desc) < MIN_MATCH_COUNT or len(self.frame_desc) < MIN_MATCH_COUNT:
|
|
||||||
return
|
|
||||||
|
|
||||||
raw_matches = self.matcher.knnMatch(self.frame_desc, k = 2)
|
|
||||||
p0, p1 = [], []
|
|
||||||
for m in raw_matches:
|
|
||||||
if len(m) == 2 and m[0].distance < m[1].distance * 0.75:
|
|
||||||
m = m[0]
|
|
||||||
p0.append( self.ref_points[m.trainIdx].pt ) # queryIdx
|
|
||||||
p1.append( self.frame_points[m.queryIdx].pt )
|
|
||||||
p0, p1 = np.float32((p0, p1))
|
|
||||||
if len(p0) < MIN_MATCH_COUNT:
|
|
||||||
return
|
|
||||||
|
|
||||||
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 4.0)
|
|
||||||
status = status.ravel() != 0
|
|
||||||
if status.sum() < MIN_MATCH_COUNT:
|
|
||||||
return
|
|
||||||
p0, p1 = p0[status], p1[status]
|
|
||||||
return p0, p1, H
|
|
||||||
|
|
||||||
|
|
||||||
def on_frame(self, vis):
|
|
||||||
match = self.match_frames()
|
|
||||||
if match is None:
|
|
||||||
return
|
|
||||||
w, h = getsize(self.frame)
|
|
||||||
p0, p1, H = match
|
|
||||||
for (x0, y0), (x1, y1) in zip(np.int32(p0), np.int32(p1)):
|
|
||||||
cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0))
|
|
||||||
x0, y0, x1, y1 = self.ref_rect
|
|
||||||
corners0 = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
|
||||||
img_corners = cv2.perspectiveTransform(corners0.reshape(1, -1, 2), H)
|
|
||||||
cv2.polylines(vis, [np.int32(img_corners)], True, (255, 255, 255), 2)
|
|
||||||
|
|
||||||
corners3d = np.hstack([corners0, np.zeros((4, 1), np.float32)])
|
|
||||||
fx = 0.9
|
|
||||||
K = np.float64([[fx*w, 0, 0.5*(w-1)],
|
|
||||||
[0, fx*w, 0.5*(h-1)],
|
|
||||||
[0.0,0.0, 1.0]])
|
|
||||||
dist_coef = np.zeros(4)
|
|
||||||
ret, rvec, tvec = cv2.solvePnP(corners3d, img_corners, K, dist_coef)
|
|
||||||
verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0)
|
|
||||||
verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
|
|
||||||
for i, j in ar_edges:
|
|
||||||
(x0, y0), (x1, y1) = verts[i], verts[j]
|
|
||||||
cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2)
|
|
||||||
|
|
||||||
def on_rect(self, rect):
|
def on_rect(self, rect):
|
||||||
x0, y0, x1, y1 = rect
|
self.tracker.clear()
|
||||||
self.ref_frame = self.frame.copy()
|
self.tracker.add_target(self.frame, rect)
|
||||||
self.ref_rect = rect
|
|
||||||
points, descs = [], []
|
|
||||||
for kp, desc in zip(self.frame_points, self.frame_desc):
|
|
||||||
x, y = kp.pt
|
|
||||||
if x0 <= x <= x1 and y0 <= y <= y1:
|
|
||||||
points.append(kp)
|
|
||||||
descs.append(desc)
|
|
||||||
self.ref_points, self.ref_descs = points, np.uint8(descs)
|
|
||||||
|
|
||||||
self.matcher.clear()
|
|
||||||
self.matcher.add([self.ref_descs])
|
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
while True:
|
while True:
|
||||||
@ -133,23 +49,26 @@ class App:
|
|||||||
ret, frame = self.cap.read()
|
ret, frame = self.cap.read()
|
||||||
if not ret:
|
if not ret:
|
||||||
break
|
break
|
||||||
self.frame = np.fliplr(frame).copy()
|
self.frame = np.frame.copy()
|
||||||
self.frame_points, self.frame_desc = self.detector.detectAndCompute(self.frame, None)
|
|
||||||
if self.frame_desc is None: # detectAndCompute returns descs=None if not keypoints found
|
|
||||||
self.frame_desc = []
|
|
||||||
|
|
||||||
w, h = getsize(self.frame)
|
w, h = getsize(self.frame)
|
||||||
vis = np.zeros((h, w*2, 3), np.uint8)
|
vis = np.zeros((h, w*2, 3), np.uint8)
|
||||||
vis[:h,:w] = self.frame
|
vis[:h,:w] = self.frame
|
||||||
if self.ref_frame is not None:
|
if len(self.tracker.targets) > 0:
|
||||||
vis[:h,w:] = self.ref_frame
|
target = self.tracker.targets[0]
|
||||||
x0, y0, x1, y1 = self.ref_rect
|
vis[:,w:] = target.image
|
||||||
|
draw_keypoints(vis[:,w:], target.keypoints)
|
||||||
|
x0, y0, x1, y1 = target.rect
|
||||||
cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2)
|
cv2.rectangle(vis, (x0+w, y0), (x1+w, y1), (0, 255, 0), 2)
|
||||||
draw_keypoints(vis[:,w:], self.ref_points)
|
|
||||||
draw_keypoints(vis, self.frame_points)
|
|
||||||
|
|
||||||
if playing and self.ref_frame is not None:
|
if playing:
|
||||||
self.on_frame(vis)
|
tracked = self.tracker.track(self.frame)
|
||||||
|
if len(tracked) > 0:
|
||||||
|
tracked = tracked[0]
|
||||||
|
cv2.polylines(vis, [np.int32(tracked.quad)], True, (255, 255, 255), 2)
|
||||||
|
for (x0, y0), (x1, y1) in zip(np.int32(tracked.p0), np.int32(tracked.p1)):
|
||||||
|
cv2.line(vis, (x0+w, y0), (x1, y1), (0, 255, 0))
|
||||||
|
draw_keypoints(vis, self.tracker.frame_points)
|
||||||
|
|
||||||
self.rect_sel.draw(vis)
|
self.rect_sel.draw(vis)
|
||||||
cv2.imshow('plane', vis)
|
cv2.imshow('plane', vis)
|
||||||
@ -159,6 +78,7 @@ class App:
|
|||||||
if ch == 27:
|
if ch == 27:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
print __doc__
|
print __doc__
|
||||||
|
|
||||||
|
103
samples/python2/plane_ar.py
Executable file
103
samples/python2/plane_ar.py
Executable file
@ -0,0 +1,103 @@
|
|||||||
|
'''
|
||||||
|
Planar augmented reality
|
||||||
|
==================
|
||||||
|
|
||||||
|
This sample shows an example of augmented reality overlay over a planar object
|
||||||
|
tracked by PlaneTracker from plane_tracker.py. solvePnP funciton is used to
|
||||||
|
estimate the tracked object location in 3d space.
|
||||||
|
|
||||||
|
video: http://www.youtube.com/watch?v=pzVbhxx6aog
|
||||||
|
|
||||||
|
Usage
|
||||||
|
-----
|
||||||
|
plane_ar.py [<video source>]
|
||||||
|
|
||||||
|
Keys:
|
||||||
|
SPACE - pause video
|
||||||
|
c - clear targets
|
||||||
|
|
||||||
|
Select a textured planar object to track by drawing a box with a mouse.
|
||||||
|
Use 'focal' slider to adjust to camera focal length for proper video augmentation.
|
||||||
|
'''
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import video
|
||||||
|
import common
|
||||||
|
from plane_tracker import PlaneTracker
|
||||||
|
|
||||||
|
|
||||||
|
ar_verts = np.float32([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0],
|
||||||
|
[0, 0, 1], [0, 1, 1], [1, 1, 1], [1, 0, 1],
|
||||||
|
[0, 0.5, 2], [1, 0.5, 2]])
|
||||||
|
ar_edges = [(0, 1), (1, 2), (2, 3), (3, 0),
|
||||||
|
(4, 5), (5, 6), (6, 7), (7, 4),
|
||||||
|
(0, 4), (1, 5), (2, 6), (3, 7),
|
||||||
|
(4, 8), (5, 8), (6, 9), (7, 9), (8, 9)]
|
||||||
|
|
||||||
|
class App:
|
||||||
|
def __init__(self, src):
|
||||||
|
self.cap = video.create_capture(src)
|
||||||
|
self.frame = None
|
||||||
|
self.paused = False
|
||||||
|
self.tracker = PlaneTracker()
|
||||||
|
|
||||||
|
cv2.namedWindow('plane')
|
||||||
|
cv2.createTrackbar('focal', 'plane', 25, 50, common.nothing)
|
||||||
|
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||||
|
|
||||||
|
def on_rect(self, rect):
|
||||||
|
self.tracker.add_target(self.frame, rect)
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
while True:
|
||||||
|
playing = not self.paused and not self.rect_sel.dragging
|
||||||
|
if playing or self.frame is None:
|
||||||
|
ret, frame = self.cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
self.frame = frame.copy()
|
||||||
|
|
||||||
|
vis = self.frame.copy()
|
||||||
|
if playing:
|
||||||
|
tracked = self.tracker.track(self.frame)
|
||||||
|
for tr in tracked:
|
||||||
|
cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2)
|
||||||
|
for (x, y) in np.int32(tr.p1):
|
||||||
|
cv2.circle(vis, (x, y), 2, (255, 255, 255))
|
||||||
|
self.draw_overlay(vis, tr)
|
||||||
|
|
||||||
|
self.rect_sel.draw(vis)
|
||||||
|
cv2.imshow('plane', vis)
|
||||||
|
ch = cv2.waitKey(1)
|
||||||
|
if ch == ord(' '):
|
||||||
|
self.paused = not self.paused
|
||||||
|
if ch == ord('c'):
|
||||||
|
self.tracker.clear()
|
||||||
|
if ch == 27:
|
||||||
|
break
|
||||||
|
|
||||||
|
def draw_overlay(self, vis, tracked):
|
||||||
|
x0, y0, x1, y1 = tracked.target.rect
|
||||||
|
quad_3d = np.float32([[x0, y0, 0], [x1, y0, 0], [x1, y1, 0], [x0, y1, 0]])
|
||||||
|
fx = 0.5 + cv2.getTrackbarPos('focal', 'plane') / 50.0
|
||||||
|
h, w = vis.shape[:2]
|
||||||
|
K = np.float64([[fx*w, 0, 0.5*(w-1)],
|
||||||
|
[0, fx*w, 0.5*(h-1)],
|
||||||
|
[0.0,0.0, 1.0]])
|
||||||
|
dist_coef = np.zeros(4)
|
||||||
|
ret, rvec, tvec = cv2.solvePnP(quad_3d, tracked.quad, K, dist_coef)
|
||||||
|
verts = ar_verts * [(x1-x0), (y1-y0), -(x1-x0)*0.3] + (x0, y0, 0)
|
||||||
|
verts = cv2.projectPoints(verts, rvec, tvec, K, dist_coef)[0].reshape(-1, 2)
|
||||||
|
for i, j in ar_edges:
|
||||||
|
(x0, y0), (x1, y1) = verts[i], verts[j]
|
||||||
|
cv2.line(vis, (int(x0), int(y0)), (int(x1), int(y1)), (255, 255, 0), 2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print __doc__
|
||||||
|
|
||||||
|
import sys
|
||||||
|
try: video_src = sys.argv[1]
|
||||||
|
except: video_src = 0
|
||||||
|
App(video_src).run()
|
171
samples/python2/plane_tracker.py
Executable file
171
samples/python2/plane_tracker.py
Executable file
@ -0,0 +1,171 @@
|
|||||||
|
'''
|
||||||
|
Multitarget planar tracking
|
||||||
|
==================
|
||||||
|
|
||||||
|
Example of using features2d framework for interactive video homography matching.
|
||||||
|
ORB features and FLANN matcher are used. This sample provides PlaneTracker class
|
||||||
|
and an example of its usage.
|
||||||
|
|
||||||
|
video: http://www.youtube.com/watch?v=pzVbhxx6aog
|
||||||
|
|
||||||
|
Usage
|
||||||
|
-----
|
||||||
|
plane_tracker.py [<video source>]
|
||||||
|
|
||||||
|
Keys:
|
||||||
|
SPACE - pause video
|
||||||
|
c - clear targets
|
||||||
|
|
||||||
|
Select a textured planar object to track by drawing a box with a mouse.
|
||||||
|
'''
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
from collections import namedtuple
|
||||||
|
import video
|
||||||
|
import common
|
||||||
|
|
||||||
|
|
||||||
|
FLANN_INDEX_KDTREE = 1
|
||||||
|
FLANN_INDEX_LSH = 6
|
||||||
|
flann_params= dict(algorithm = FLANN_INDEX_LSH,
|
||||||
|
table_number = 6, # 12
|
||||||
|
key_size = 12, # 20
|
||||||
|
multi_probe_level = 1) #2
|
||||||
|
|
||||||
|
MIN_MATCH_COUNT = 10
|
||||||
|
|
||||||
|
'''
|
||||||
|
image - image to track
|
||||||
|
rect - tracked rectangle (x1, y1, x2, y2)
|
||||||
|
keypoints - keypoints detected inside rect
|
||||||
|
descrs - their descriptors
|
||||||
|
data - some user-provided data
|
||||||
|
'''
|
||||||
|
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
|
||||||
|
|
||||||
|
'''
|
||||||
|
target - reference to PlanarTarget
|
||||||
|
p0 - matched points coords in target image
|
||||||
|
p1 - matched points coords in input frame
|
||||||
|
H - homography matrix from p0 to p1
|
||||||
|
quad - target bounary quad in input frame
|
||||||
|
'''
|
||||||
|
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
|
||||||
|
|
||||||
|
class PlaneTracker:
|
||||||
|
def __init__(self):
|
||||||
|
self.detector = cv2.ORB( nfeatures = 1000 )
|
||||||
|
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
||||||
|
self.targets = []
|
||||||
|
|
||||||
|
def add_target(self, image, rect, data=None):
|
||||||
|
'''Add a new tracking target.'''
|
||||||
|
x0, y0, x1, y1 = rect
|
||||||
|
raw_points, raw_descrs = self.detect_features(image)
|
||||||
|
points, descs = [], []
|
||||||
|
for kp, desc in zip(raw_points, raw_descrs):
|
||||||
|
x, y = kp.pt
|
||||||
|
if x0 <= x <= x1 and y0 <= y <= y1:
|
||||||
|
points.append(kp)
|
||||||
|
descs.append(desc)
|
||||||
|
descs = np.uint8(descs)
|
||||||
|
self.matcher.add([descs])
|
||||||
|
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=None)
|
||||||
|
self.targets.append(target)
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
'''Remove all targets'''
|
||||||
|
self.targets = []
|
||||||
|
self.matcher.clear()
|
||||||
|
|
||||||
|
def track(self, frame):
|
||||||
|
'''Returns a list of detected TrackedTarget objects'''
|
||||||
|
self.frame_points, self.frame_descrs = self.detect_features(frame)
|
||||||
|
if len(self.frame_points) < MIN_MATCH_COUNT:
|
||||||
|
return []
|
||||||
|
matches = self.matcher.knnMatch(self.frame_descrs, k = 2)
|
||||||
|
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
|
||||||
|
if len(matches) < MIN_MATCH_COUNT:
|
||||||
|
return []
|
||||||
|
matches_by_id = [[] for _ in xrange(len(self.targets))]
|
||||||
|
for m in matches:
|
||||||
|
matches_by_id[m.imgIdx].append(m)
|
||||||
|
tracked = []
|
||||||
|
for imgIdx, matches in enumerate(matches_by_id):
|
||||||
|
if len(matches) < MIN_MATCH_COUNT:
|
||||||
|
continue
|
||||||
|
target = self.targets[imgIdx]
|
||||||
|
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
|
||||||
|
p1 = [self.frame_points[m.queryIdx].pt for m in matches]
|
||||||
|
p0, p1 = np.float32((p0, p1))
|
||||||
|
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
|
||||||
|
status = status.ravel() != 0
|
||||||
|
if status.sum() < MIN_MATCH_COUNT:
|
||||||
|
continue
|
||||||
|
p0, p1 = p0[status], p1[status]
|
||||||
|
|
||||||
|
x0, y0, x1, y1 = target.rect
|
||||||
|
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
||||||
|
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
|
||||||
|
|
||||||
|
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
|
||||||
|
tracked.append(track)
|
||||||
|
tracked.sort(key = lambda t: len(t.p0), reverse=True)
|
||||||
|
return tracked
|
||||||
|
|
||||||
|
def detect_features(self, frame):
|
||||||
|
'''detect_features(self, frame) -> keypoints, descrs'''
|
||||||
|
keypoints, descrs = self.detector.detectAndCompute(frame, None)
|
||||||
|
if descrs is None: # detectAndCompute returns descs=None if not keypoints found
|
||||||
|
descrs = []
|
||||||
|
return keypoints, descrs
|
||||||
|
|
||||||
|
|
||||||
|
class App:
|
||||||
|
def __init__(self, src):
|
||||||
|
self.cap = video.create_capture(src)
|
||||||
|
self.frame = None
|
||||||
|
self.paused = False
|
||||||
|
self.tracker = PlaneTracker()
|
||||||
|
|
||||||
|
cv2.namedWindow('plane')
|
||||||
|
self.rect_sel = common.RectSelector('plane', self.on_rect)
|
||||||
|
|
||||||
|
def on_rect(self, rect):
|
||||||
|
self.tracker.add_target(self.frame, rect)
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
while True:
|
||||||
|
playing = not self.paused and not self.rect_sel.dragging
|
||||||
|
if playing or self.frame is None:
|
||||||
|
ret, frame = self.cap.read()
|
||||||
|
if not ret:
|
||||||
|
break
|
||||||
|
self.frame = frame.copy()
|
||||||
|
|
||||||
|
vis = self.frame.copy()
|
||||||
|
if playing:
|
||||||
|
tracked = self.tracker.track(self.frame)
|
||||||
|
for tr in tracked:
|
||||||
|
cv2.polylines(vis, [np.int32(tr.quad)], True, (255, 255, 255), 2)
|
||||||
|
for (x, y) in np.int32(tr.p1):
|
||||||
|
cv2.circle(vis, (x, y), 2, (255, 255, 255))
|
||||||
|
|
||||||
|
self.rect_sel.draw(vis)
|
||||||
|
cv2.imshow('plane', vis)
|
||||||
|
ch = cv2.waitKey(1)
|
||||||
|
if ch == ord(' '):
|
||||||
|
self.paused = not self.paused
|
||||||
|
if ch == ord('c'):
|
||||||
|
self.tracker.clear()
|
||||||
|
if ch == 27:
|
||||||
|
break
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
print __doc__
|
||||||
|
|
||||||
|
import sys
|
||||||
|
try: video_src = sys.argv[1]
|
||||||
|
except: video_src = 0
|
||||||
|
App(video_src).run()
|
Loading…
x
Reference in New Issue
Block a user