changed default parameters of SURF, which improved its performance. Restored bi-linear interpolation in SURF descriptor extractor. Added test for SURF homography + check for non-zero (positive) responses.

This commit is contained in:
Vadim Pisarevsky 2013-01-30 18:07:37 +04:00
parent 7e5f877ad9
commit 1f261c2f9d
3 changed files with 40 additions and 5 deletions

View File

@ -698,11 +698,12 @@ struct SURFInvoker
cvGetQuadrangleSubPix( img, &win, &W ); cvGetQuadrangleSubPix( img, &win, &W );
*/ */
// Nearest neighbour version (faster)
float win_offset = -(float)(win_size-1)/2; float win_offset = -(float)(win_size-1)/2;
float start_x = center.x + win_offset*cos_dir + win_offset*sin_dir; float start_x = center.x + win_offset*cos_dir + win_offset*sin_dir;
float start_y = center.y - win_offset*sin_dir + win_offset*cos_dir; float start_y = center.y - win_offset*sin_dir + win_offset*cos_dir;
uchar* WIN = win.data; uchar* WIN = win.data;
#if 0
// Nearest neighbour version (faster)
for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir ) for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
{ {
float pixel_x = start_x; float pixel_x = start_x;
@ -714,6 +715,36 @@ struct SURFInvoker
WIN[i*win_size + j] = img->at<uchar>(y, x); WIN[i*win_size + j] = img->at<uchar>(y, x);
} }
} }
#else
int ncols1 = img->cols-1, nrows1 = img->rows-1;
size_t imgstep = img->step;
for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
{
double pixel_x = start_x;
double pixel_y = start_y;
for( j = 0; j < win_size; j++, pixel_x += cos_dir, pixel_y -= sin_dir )
{
int ix = cvFloor(pixel_x), iy = cvFloor(pixel_y);
if( (unsigned)ix < (unsigned)ncols1 &&
(unsigned)iy < (unsigned)nrows1 )
{
float a = (float)(pixel_x - ix), b = (float)(pixel_y - iy);
const uchar* imgptr = &img->at<uchar>(iy, ix);
WIN[i*win_size + j] = (uchar)
cvRound(imgptr[0]*(1.f - a)*(1.f - b) +
imgptr[1]*a*(1.f - b) +
imgptr[imgstep]*(1.f - a)*b +
imgptr[imgstep+1]*a*b);
}
else
{
int x = std::min(std::max(cvRound(pixel_x), 0), ncols1);
int y = std::min(std::max(cvRound(pixel_y), 0), nrows1);
WIN[i*win_size + j] = img->at<uchar>(y, x);
}
}
}
#endif
} }
else else
{ {
@ -844,10 +875,10 @@ struct SURFInvoker
SURF::SURF() SURF::SURF()
{ {
hessianThreshold = 100; hessianThreshold = 100;
extended = true; extended = false;
upright = false; upright = false;
nOctaves = 4; nOctaves = 4;
nOctaveLayers = 2; nOctaveLayers = 3;
} }
SURF::SURF(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, bool _upright) SURF::SURF(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, bool _upright)

View File

@ -1114,6 +1114,10 @@ protected:
Mat d1, d2; Mat d1, d2;
f->operator()(img1, Mat(), kpt1, d1); f->operator()(img1, Mat(), kpt1, d1);
f->operator()(img1, Mat(), kpt2, d2); f->operator()(img1, Mat(), kpt2, d2);
for( size_t i = 0; i < kpt1.size(); i++ )
CV_Assert(kpt1[i].response > 0 );
for( size_t i = 0; i < kpt2.size(); i++ )
CV_Assert(kpt2[i].response > 0 );
vector<DMatch> matches; vector<DMatch> matches;
BFMatcher(NORM_L2, true).match(d1, d2, matches); BFMatcher(NORM_L2, true).match(d1, d2, matches);
@ -1140,5 +1144,5 @@ protected:
}; };
TEST(Features2d_SIFTHomographyTest, regression) { CV_DetectPlanarTest test("SIFT", 80); test.safe_run(); } TEST(Features2d_SIFTHomographyTest, regression) { CV_DetectPlanarTest test("SIFT", 80); test.safe_run(); }
//TEST(Features2d_SURFHomographyTest, regression) { CV_DetectPlanarTest test("SURF", 80); test.safe_run(); } TEST(Features2d_SURFHomographyTest, regression) { CV_DetectPlanarTest test("SURF", 80); test.safe_run(); }

View File

@ -616,7 +616,7 @@ protected:
TEST(Features2d_RotationInvariance_Detector_SURF, regression) TEST(Features2d_RotationInvariance_Detector_SURF, regression)
{ {
DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"), DetectorRotationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
0.45f, 0.44f,
0.76f); 0.76f);
test.safe_run(); test.safe_run();
} }