Copied docs of Kalman Filter from source code to documentation
This commit is contained in:
parent
289a827aed
commit
1ebdfa4992
@ -263,44 +263,61 @@ KalmanFilter
|
||||
------------
|
||||
.. c:type:: KalmanFilter
|
||||
|
||||
Kalman filter class ::
|
||||
|
||||
class KalmanFilter
|
||||
{
|
||||
public:
|
||||
KalmanFilter();
|
||||
KalmanFilter(int dynamParams, int measureParams, int controlParams=0);
|
||||
void init(int dynamParams, int measureParams, int controlParams=0);
|
||||
// predicts statePre from statePost
|
||||
const Mat& predict(const Mat& control=Mat());
|
||||
// corrects statePre based on the input measurement vector
|
||||
// and stores the result in statePost.
|
||||
const Mat& correct(const Mat& measurement);
|
||||
|
||||
Mat statePre; // predicted state (x'(k)):
|
||||
// x(k)=A*x(k-1)+B*u(k)
|
||||
Mat statePost; // corrected state (x(k)):
|
||||
// x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
Mat transitionMatrix; // state transition matrix (A)
|
||||
Mat controlMatrix; // control matrix (B)
|
||||
// (it is not used if there is no control)
|
||||
Mat measurementMatrix; // measurement matrix (H)
|
||||
Mat processNoiseCov; // process noise covariance matrix (Q)
|
||||
Mat measurementNoiseCov;// measurement noise covariance matrix (R)
|
||||
Mat errorCovPre; // priori error estimate covariance matrix (P'(k)):
|
||||
// P'(k)=A*P(k-1)*At + Q)*/
|
||||
Mat gain; // Kalman gain matrix (K(k)):
|
||||
// K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
||||
Mat errorCovPost; // posteriori error estimate covariance matrix (P(k)):
|
||||
// P(k)=(I-K(k)*H)*P'(k)
|
||||
...
|
||||
};
|
||||
|
||||
Kalman filter class.
|
||||
|
||||
The class implements a standard Kalman filter
|
||||
http://en.wikipedia.org/wiki/Kalman_filter
|
||||
. However, you can modify ``transitionMatrix``,``controlMatrix`` , and ``measurementMatrix`` to get an extended Kalman filter functionality. See the OpenCV sample ``kalman.c`` .
|
||||
. However, you can modify ``transitionMatrix``, ``controlMatrix``, and ``measurementMatrix`` to get an extended Kalman filter functionality. See the OpenCV sample ``kalman.cpp`` .
|
||||
|
||||
KalmanFilter::KalmanFilter
|
||||
--------------------------
|
||||
|
||||
.. cpp:function:: KalmanFilter::KalmanFilter()
|
||||
|
||||
Creates an empty object that can be initialized later by the function :cpp:func:`KalmanFilter::init`.
|
||||
|
||||
.. cpp:function:: KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F)
|
||||
|
||||
The full constructor.
|
||||
|
||||
:param dynamParams: The dimensionality of the state.
|
||||
|
||||
:param measureParams: The dimensionality of the measurement.
|
||||
|
||||
:param controlParams: The dimensionality of the control vector.
|
||||
|
||||
:param type: Type of the created matrices. Should be ``CV_32F`` or ``CV_64F``.
|
||||
|
||||
|
||||
KalmanFilter::init
|
||||
------------------
|
||||
|
||||
.. cpp:function:: void KalmanFilter::init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F)
|
||||
|
||||
Re-initializes Kalman filter. The previous content is destroyed.
|
||||
|
||||
:param dynamParams: The dimensionality of the state.
|
||||
|
||||
:param measureParams: The dimensionality of the measurement.
|
||||
|
||||
:param controlParams: The dimensionality of the control vector.
|
||||
|
||||
:param type: Type of the created matrices. Should be ``CV_32F`` or ``CV_64F``.
|
||||
|
||||
KalmanFilter::predict
|
||||
---------------------
|
||||
|
||||
.. cpp:function:: const Mat& KalmanFilter::predict(const Mat& control=Mat())
|
||||
|
||||
Computes predicted state
|
||||
|
||||
|
||||
KalmanFilter::correct
|
||||
---------------------
|
||||
|
||||
.. cpp:function:: const Mat& KalmanFilter::correct(const Mat& measurement)
|
||||
|
||||
Updates the predicted state from the measurement
|
||||
|
||||
|
||||
BackgroundSubtractor
|
||||
@ -330,7 +347,7 @@ BackgroundSubtractor::operator()
|
||||
|
||||
:param image: The next video frame.
|
||||
|
||||
:param fgmask: The foreground mask as 8-bit binary image
|
||||
:param fgmask: The foreground mask as 8-bit binary image.
|
||||
|
||||
|
||||
BackgroundSubtractor::getBackgroundImage
|
||||
|
Loading…
x
Reference in New Issue
Block a user