HAL math interfaces: fastAtan2, magnitude, sqrt, invSqrt, log, exp

This commit is contained in:
Maksim Shabunin 2016-05-24 13:57:27 +03:00
parent f6fa1cee2b
commit 1e667de1f3
10 changed files with 412 additions and 316 deletions

View File

@ -85,7 +85,8 @@ CV_EXPORTS void exp64f(const double* src, double* dst, int n);
CV_EXPORTS void log32f(const float* src, float* dst, int n);
CV_EXPORTS void log64f(const double* src, double* dst, int n);
CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
CV_EXPORTS void fastAtan32f(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
CV_EXPORTS void fastAtan64f(const double* y, const double* x, double* dst, int n, bool angleInDegrees);
CV_EXPORTS void magnitude32f(const float* x, const float* y, float* dst, int n);
CV_EXPORTS void magnitude64f(const double* x, const double* y, double* dst, int n);
CV_EXPORTS void sqrt32f(const float* src, float* dst, int len);
@ -228,6 +229,7 @@ CV_EXPORTS void exp(const double* src, double* dst, int n);
CV_EXPORTS void log(const float* src, float* dst, int n);
CV_EXPORTS void log(const double* src, double* dst, int n);
CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n);
CV_EXPORTS void magnitude(const double* x, const double* y, double* dst, int n);
CV_EXPORTS void sqrt(const float* src, float* dst, int len);

View File

@ -317,4 +317,98 @@ template <typename T> struct V_SIMD128Traits
//! @}
//==================================================================================================
//! @cond IGNORED
namespace cv {
template <typename R> struct V_RegTrait128;
template <> struct V_RegTrait128<uchar> {
typedef v_uint8x16 reg;
typedef v_uint16x8 w_reg;
typedef v_uint32x4 q_reg;
typedef v_uint8x16 u_reg;
static v_uint8x16 zero() { return v_setzero_u8(); }
static v_uint8x16 all(uchar val) { return v_setall_u8(val); }
};
template <> struct V_RegTrait128<schar> {
typedef v_int8x16 reg;
typedef v_int16x8 w_reg;
typedef v_int32x4 q_reg;
typedef v_uint8x16 u_reg;
static v_int8x16 zero() { return v_setzero_s8(); }
static v_int8x16 all(schar val) { return v_setall_s8(val); }
};
template <> struct V_RegTrait128<ushort> {
typedef v_uint16x8 reg;
typedef v_uint32x4 w_reg;
typedef v_int16x8 int_reg;
typedef v_uint16x8 u_reg;
static v_uint16x8 zero() { return v_setzero_u16(); }
static v_uint16x8 all(ushort val) { return v_setall_u16(val); }
};
template <> struct V_RegTrait128<short> {
typedef v_int16x8 reg;
typedef v_int32x4 w_reg;
typedef v_uint16x8 u_reg;
static v_int16x8 zero() { return v_setzero_s16(); }
static v_int16x8 all(short val) { return v_setall_s16(val); }
};
template <> struct V_RegTrait128<unsigned> {
typedef v_uint32x4 reg;
typedef v_uint64x2 w_reg;
typedef v_int32x4 int_reg;
typedef v_uint32x4 u_reg;
static v_uint32x4 zero() { return v_setzero_u32(); }
static v_uint32x4 all(unsigned val) { return v_setall_u32(val); }
};
template <> struct V_RegTrait128<int> {
typedef v_int32x4 reg;
typedef v_int64x2 w_reg;
typedef v_uint32x4 u_reg;
static v_int32x4 zero() { return v_setzero_s32(); }
static v_int32x4 all(int val) { return v_setall_s32(val); }
};
template <> struct V_RegTrait128<uint64> {
typedef v_uint64x2 reg;
static v_uint64x2 zero() { return v_setzero_u64(); }
static v_uint64x2 all(uint64 val) { return v_setall_u64(val); }
};
template <> struct V_RegTrait128<int64> {
typedef v_int64x2 reg;
static v_int64x2 zero() { return v_setzero_s64(); }
static v_int64x2 all(int64 val) { return v_setall_s64(val); }
};
template <> struct V_RegTrait128<float> {
typedef v_float32x4 reg;
typedef v_int32x4 int_reg;
typedef v_float32x4 u_reg;
static v_float32x4 zero() { return v_setzero_f32(); }
static v_float32x4 all(float val) { return v_setall_f32(val); }
};
#if CV_SIMD128_64F
template <> struct V_RegTrait128<double> {
typedef v_float64x2 reg;
typedef v_int32x4 int_reg;
typedef v_float64x2 u_reg;
static v_float64x2 zero() { return v_setzero_f64(); }
static v_float64x2 all(double val) { return v_setall_f64(val); }
};
#endif
} // cv::
//! @endcond
#endif

View File

@ -25,6 +25,20 @@ PERF_TEST_P(VectorLength, phase32f, testing::Values(128, 1000, 128*1024, 512*102
SANITY_CHECK(angle, 5e-5);
}
PERF_TEST_P(VectorLength, phase64f, testing::Values(128, 1000, 128*1024, 512*1024, 1024*1024))
{
size_t length = GetParam();
vector<double> X(length);
vector<double> Y(length);
vector<double> angle(length);
declare.in(X, Y, WARMUP_RNG).out(angle);
TEST_CYCLE_N(200) cv::phase(X, Y, angle, true);
SANITY_CHECK(angle, 5e-5);
}
PERF_TEST_P( MaxDim_MaxPoints, kmeans,
testing::Combine( testing::Values( 16, 32, 64 ),
testing::Values( 300, 400, 500) ) )

View File

@ -376,6 +376,110 @@ inline int hal_ni_merge64s(const int64 **src_data, int64 *dst_data, int len, int
#define cv_hal_merge64s hal_ni_merge64s
//! @endcond
/**
@param y,x source Y and X arrays
@param dst destination array
@param len length of arrays
@param angleInDegrees if set to true return angles in degrees, otherwise in radians
*/
//! @addtogroup core_hal_interface_fastAtan Atan calculation
//! @{
inline int hal_ni_fastAtan32f(const float* y, const float* x, float* dst, int len, bool angleInDegrees) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_fastAtan64f(const double* y, const double* x, double* dst, int len, bool angleInDegrees) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
//! @}
//! @cond IGNORED
#define cv_hal_fastAtan32f hal_ni_fastAtan32f
#define cv_hal_fastAtan64f hal_ni_fastAtan64f
//! @endcond
/**
@param x,y source X and Y arrays
@param dst destination array
@param len length of arrays
*/
//! @addtogroup core_hal_interface_magnitude Magnitude calculation
//! @{
inline int hal_ni_magnitude32f(const float *x, const float *y, float *dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_magnitude64f(const double *x, const double *y, double *dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
//! @}
//! @cond IGNORED
#define cv_hal_magnitude32f hal_ni_magnitude32f
#define cv_hal_magnitude64f hal_ni_magnitude64f
//! @endcond
/**
@param src source array
@param dst destination array
@param len length of arrays
*/
//! @addtogroup core_hal_interface_invSqrt Inverse square root calculation
//! @{
inline int hal_ni_invSqrt32f(const float* src, float* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_invSqrt64f(const double* src, double* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
//! @}
//! @cond IGNORED
#define cv_hal_invSqrt32f hal_ni_invSqrt32f
#define cv_hal_invSqrt64f hal_ni_invSqrt64f
//! @endcond
/**
@param src source array
@param dst destination array
@param len length of arrays
*/
//! @addtogroup core_hal_interface_sqrt Square root calculation
//! @{
inline int hal_ni_sqrt32f(const float* src, float* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_sqrt64f(const double* src, double* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
//! @}
//! @cond IGNORED
#define cv_hal_sqrt32f hal_ni_sqrt32f
#define cv_hal_sqrt64f hal_ni_sqrt64f
//! @endcond
/**
@param src source array
@param dst destination array
@param len length of arrays
*/
//! @addtogroup core_hal_interface_log Natural logarithm calculation
//! @{
inline int hal_ni_log32f(const float* src, float* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_log64f(const double* src, double* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
//! @}
//! @cond IGNORED
#define cv_hal_log32f hal_ni_log32f
#define cv_hal_log64f hal_ni_log64f
//! @endcond
/**
@param src source array
@param dst destination array
@param len length of arrays
*/
//! @addtogroup core_hal_interface_exp Exponent calculation
//! @{
inline int hal_ni_exp32f(const float* src, float* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
inline int hal_ni_exp64f(const double* src, double* dst, int len) { return CV_HAL_ERROR_NOT_IMPLEMENTED; }
//! @}
//! @cond IGNORED
#define cv_hal_exp32f hal_ni_exp32f
#define cv_hal_exp64f hal_ni_exp64f
//! @endcond
/**
@brief Dummy structure storing DFT/DCT context

View File

@ -51,11 +51,6 @@ namespace cv
typedef void (*MathFunc)(const void* src, void* dst, int len);
static const float atan2_p1 = 0.9997878412794807f*(float)(180/CV_PI);
static const float atan2_p3 = -0.3258083974640975f*(float)(180/CV_PI);
static const float atan2_p5 = 0.1555786518463281f*(float)(180/CV_PI);
static const float atan2_p7 = -0.04432655554792128f*(float)(180/CV_PI);
#ifdef HAVE_OPENCL
enum { OCL_OP_LOG=0, OCL_OP_EXP=1, OCL_OP_MAG=2, OCL_OP_PHASE_DEGREES=3, OCL_OP_PHASE_RADIANS=4 };
@ -100,29 +95,6 @@ static bool ocl_math_op(InputArray _src1, InputArray _src2, OutputArray _dst, in
#endif
float fastAtan2( float y, float x )
{
float ax = std::abs(x), ay = std::abs(y);
float a, c, c2;
if( ax >= ay )
{
c = ay/(ax + (float)DBL_EPSILON);
c2 = c*c;
a = (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
}
else
{
c = ax/(ay + (float)DBL_EPSILON);
c2 = c*c;
a = 90.f - (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
}
if( x < 0 )
a = 180.f - a;
if( y < 0 )
a = 360.f - a;
return a;
}
/* ************************************************************************** *\
Fast cube root by Ken Turkowski
(http://www.worldserver.com/turk/computergraphics/papers.html)
@ -202,7 +174,6 @@ void magnitude( InputArray src1, InputArray src2, OutputArray dst )
}
}
void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegrees )
{
int type = src1.type(), depth = src1.depth(), cn = src1.channels();
@ -218,19 +189,8 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre
const Mat* arrays[] = {&X, &Y, &Angle, 0};
uchar* ptrs[3];
NAryMatIterator it(arrays, ptrs);
cv::AutoBuffer<float> _buf;
float* buf[2] = {0, 0};
int j, k, total = (int)(it.size*cn), blockSize = total;
int j, total = (int)(it.size*cn), blockSize = total;
size_t esz1 = X.elemSize1();
if( depth == CV_64F )
{
blockSize = std::min(blockSize, ((BLOCK_SIZE+cn-1)/cn)*cn);
_buf.allocate(blockSize*2);
buf[0] = _buf;
buf[1] = buf[0] + blockSize;
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
@ -240,53 +200,13 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre
{
const float *x = (const float*)ptrs[0], *y = (const float*)ptrs[1];
float *angle = (float*)ptrs[2];
hal::fastAtan2( y, x, angle, len, angleInDegrees );
hal::fastAtan32f( y, x, angle, len, angleInDegrees );
}
else
{
const double *x = (const double*)ptrs[0], *y = (const double*)ptrs[1];
double *angle = (double*)ptrs[2];
k = 0;
#if CV_SSE2
if (USE_SSE2)
{
for ( ; k <= len - 4; k += 4)
{
__m128 v_dst0 = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(x + k)),
_mm_cvtpd_ps(_mm_loadu_pd(x + k + 2)));
__m128 v_dst1 = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(y + k)),
_mm_cvtpd_ps(_mm_loadu_pd(y + k + 2)));
_mm_storeu_ps(buf[0] + k, v_dst0);
_mm_storeu_ps(buf[1] + k, v_dst1);
}
}
#endif
for( ; k < len; k++ )
{
buf[0][k] = (float)x[k];
buf[1][k] = (float)y[k];
}
hal::fastAtan2( buf[1], buf[0], buf[0], len, angleInDegrees );
k = 0;
#if CV_SSE2
if (USE_SSE2)
{
for ( ; k <= len - 4; k += 4)
{
__m128 v_src = _mm_loadu_ps(buf[0] + k);
_mm_storeu_pd(angle + k, _mm_cvtps_pd(v_src));
_mm_storeu_pd(angle + k + 2, _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8))));
}
}
#endif
for( ; k < len; k++ )
angle[k] = buf[0][k];
hal::fastAtan64f(y, x, angle, len, angleInDegrees);
}
ptrs[0] += len*esz1;
ptrs[1] += len*esz1;
@ -353,18 +273,9 @@ void cartToPolar( InputArray src1, InputArray src2,
const Mat* arrays[] = {&X, &Y, &Mag, &Angle, 0};
uchar* ptrs[4];
NAryMatIterator it(arrays, ptrs);
cv::AutoBuffer<float> _buf;
float* buf[2] = {0, 0};
int j, k, total = (int)(it.size*cn), blockSize = std::min(total, ((BLOCK_SIZE+cn-1)/cn)*cn);
int j, total = (int)(it.size*cn), blockSize = std::min(total, ((BLOCK_SIZE+cn-1)/cn)*cn);
size_t esz1 = X.elemSize1();
if( depth == CV_64F )
{
_buf.allocate(blockSize*2);
buf[0] = _buf;
buf[1] = buf[0] + blockSize;
}
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( j = 0; j < total; j += blockSize )
@ -375,55 +286,14 @@ void cartToPolar( InputArray src1, InputArray src2,
const float *x = (const float*)ptrs[0], *y = (const float*)ptrs[1];
float *mag = (float*)ptrs[2], *angle = (float*)ptrs[3];
hal::magnitude32f( x, y, mag, len );
hal::fastAtan2( y, x, angle, len, angleInDegrees );
hal::fastAtan32f( y, x, angle, len, angleInDegrees );
}
else
{
const double *x = (const double*)ptrs[0], *y = (const double*)ptrs[1];
double *angle = (double*)ptrs[3];
hal::magnitude64f(x, y, (double*)ptrs[2], len);
k = 0;
#if CV_SSE2
if (USE_SSE2)
{
for ( ; k <= len - 4; k += 4)
{
__m128 v_dst0 = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(x + k)),
_mm_cvtpd_ps(_mm_loadu_pd(x + k + 2)));
__m128 v_dst1 = _mm_movelh_ps(_mm_cvtpd_ps(_mm_loadu_pd(y + k)),
_mm_cvtpd_ps(_mm_loadu_pd(y + k + 2)));
_mm_storeu_ps(buf[0] + k, v_dst0);
_mm_storeu_ps(buf[1] + k, v_dst1);
}
}
#endif
for( ; k < len; k++ )
{
buf[0][k] = (float)x[k];
buf[1][k] = (float)y[k];
}
hal::fastAtan2( buf[1], buf[0], buf[0], len, angleInDegrees );
k = 0;
#if CV_SSE2
if (USE_SSE2)
{
for ( ; k <= len - 4; k += 4)
{
__m128 v_src = _mm_loadu_ps(buf[0] + k);
_mm_storeu_pd(angle + k, _mm_cvtps_pd(v_src));
_mm_storeu_pd(angle + k + 2, _mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(v_src), 8))));
}
}
#endif
for( ; k < len; k++ )
angle[k] = buf[0][k];
hal::fastAtan64f(y, x, angle, len, angleInDegrees);
}
ptrs[0] += len*esz1;
ptrs[1] += len*esz1;

View File

@ -42,116 +42,188 @@
#include "precomp.hpp"
using namespace std;
#undef HAVE_IPP
namespace cv { namespace hal {
namespace {
///////////////////////////////////// ATAN2 ////////////////////////////////////
static const float atan2_p1 = 0.9997878412794807f*(float)(180/CV_PI);
static const float atan2_p3 = -0.3258083974640975f*(float)(180/CV_PI);
static const float atan2_p5 = 0.1555786518463281f*(float)(180/CV_PI);
static const float atan2_p7 = -0.04432655554792128f*(float)(180/CV_PI);
void fastAtan2(const float *Y, const float *X, float *angle, int len, bool angleInDegrees )
{
int i = 0;
float scale = angleInDegrees ? 1 : (float)(CV_PI/180);
using namespace cv;
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && tegra::FastAtan2_32f(Y, X, angle, len, scale))
return;
#if CV_SIMD128
template <typename T>
struct v_atan
{
typedef V_RegTrait128<T> Trait;
typedef typename Trait::reg VT; // vector type
enum { WorkWidth = VT::nlanes * 2 };
v_atan(const T & scale)
: s(Trait::all(scale))
{
eps = Trait::all(DBL_EPSILON);
z = Trait::zero();
p7 = Trait::all(atan2_p7);
p5 = Trait::all(atan2_p5);
p3 = Trait::all(atan2_p3);
p1 = Trait::all(atan2_p1);
val90 = Trait::all(90.f);
val180 = Trait::all(180.f);
val360 = Trait::all(360.f);
}
inline int operator()(int len, const T * Y, const T * X, T * angle)
{
int i = 0;
const int c = VT::nlanes;
for ( ; i <= len - c * 2; i += c * 2)
{
VT x1 = v_load(X + i);
VT x2 = v_load(X + i + c);
VT y1 = v_load(Y + i);
VT y2 = v_load(Y + i + c);
v_store(&angle[i], s * one(x1, y1));
v_store(&angle[i + c], s * one(x2, y2));
}
return i;
}
private:
inline VT one(VT & x, VT & y)
{
VT ax = v_abs(x);
VT ay = v_abs(y);
VT c = v_min(ax, ay) / (v_max(ax, ay) + eps);
VT cc = c * c;
VT a = (((p7 * cc + p5) * cc + p3) * cc + p1) * c;
a = v_select(ax >= ay, a, val90 - a);
a = v_select(x < z, val180 - a, a);
a = v_select(y < z, val360 - a, a);
return a;
}
private:
VT eps;
VT z;
VT p7;
VT p5;
VT p3;
VT p1;
VT val90;
VT val180;
VT val360;
VT s;
};
#if !CV_SIMD128_64F
// emulation
template <>
struct v_atan<double>
{
v_atan(double scale) : impl(static_cast<float>(scale)) {}
inline int operator()(int len, const double * Y, const double * X, double * angle)
{
int i = 0;
const int c = v_atan<float>::WorkWidth;
float bufY[c];
float bufX[c];
float bufA[c];
for ( ; i <= len - c ; i += c)
{
for (int j = 0; j < c; ++j)
{
bufY[j] = static_cast<float>(Y[i + j]);
bufX[j] = static_cast<float>(X[i + j]);
}
impl(c, bufY, bufX, bufA);
for (int j = 0; j < c; ++j)
{
angle[i + j] = bufA[j];
}
}
return i;
}
private:
v_atan<float> impl;
};
#endif
#if CV_SSE2
Cv32suf iabsmask; iabsmask.i = 0x7fffffff;
__m128 eps = _mm_set1_ps((float)DBL_EPSILON), absmask = _mm_set1_ps(iabsmask.f);
__m128 _90 = _mm_set1_ps(90.f), _180 = _mm_set1_ps(180.f), _360 = _mm_set1_ps(360.f);
__m128 z = _mm_setzero_ps(), scale4 = _mm_set1_ps(scale);
__m128 p1 = _mm_set1_ps(atan2_p1), p3 = _mm_set1_ps(atan2_p3);
__m128 p5 = _mm_set1_ps(atan2_p5), p7 = _mm_set1_ps(atan2_p7);
#endif
for( ; i <= len - 4; i += 4 )
template <typename T>
static inline T atanImpl(T y, T x)
{
T ax = std::abs(x), ay = std::abs(y);
T a, c, c2;
if( ax >= ay )
{
__m128 x = _mm_loadu_ps(X + i), y = _mm_loadu_ps(Y + i);
__m128 ax = _mm_and_ps(x, absmask), ay = _mm_and_ps(y, absmask);
__m128 mask = _mm_cmplt_ps(ax, ay);
__m128 tmin = _mm_min_ps(ax, ay), tmax = _mm_max_ps(ax, ay);
__m128 c = _mm_div_ps(tmin, _mm_add_ps(tmax, eps));
__m128 c2 = _mm_mul_ps(c, c);
__m128 a = _mm_mul_ps(c2, p7);
a = _mm_mul_ps(_mm_add_ps(a, p5), c2);
a = _mm_mul_ps(_mm_add_ps(a, p3), c2);
a = _mm_mul_ps(_mm_add_ps(a, p1), c);
__m128 b = _mm_sub_ps(_90, a);
a = _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(a, b), mask));
b = _mm_sub_ps(_180, a);
mask = _mm_cmplt_ps(x, z);
a = _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(a, b), mask));
b = _mm_sub_ps(_360, a);
mask = _mm_cmplt_ps(y, z);
a = _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(a, b), mask));
a = _mm_mul_ps(a, scale4);
_mm_storeu_ps(angle + i, a);
c = ay/(ax + static_cast<T>(DBL_EPSILON));
c2 = c*c;
a = (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
}
#elif CV_NEON
float32x4_t eps = vdupq_n_f32((float)DBL_EPSILON);
float32x4_t _90 = vdupq_n_f32(90.f), _180 = vdupq_n_f32(180.f), _360 = vdupq_n_f32(360.f);
float32x4_t z = vdupq_n_f32(0.0f), scale4 = vdupq_n_f32(scale);
float32x4_t p1 = vdupq_n_f32(atan2_p1), p3 = vdupq_n_f32(atan2_p3);
float32x4_t p5 = vdupq_n_f32(atan2_p5), p7 = vdupq_n_f32(atan2_p7);
for( ; i <= len - 4; i += 4 )
else
{
float32x4_t x = vld1q_f32(X + i), y = vld1q_f32(Y + i);
float32x4_t ax = vabsq_f32(x), ay = vabsq_f32(y);
float32x4_t tmin = vminq_f32(ax, ay), tmax = vmaxq_f32(ax, ay);
float32x4_t c = vmulq_f32(tmin, cv_vrecpq_f32(vaddq_f32(tmax, eps)));
float32x4_t c2 = vmulq_f32(c, c);
float32x4_t a = vmulq_f32(c2, p7);
a = vmulq_f32(vaddq_f32(a, p5), c2);
a = vmulq_f32(vaddq_f32(a, p3), c2);
a = vmulq_f32(vaddq_f32(a, p1), c);
a = vbslq_f32(vcgeq_f32(ax, ay), a, vsubq_f32(_90, a));
a = vbslq_f32(vcltq_f32(x, z), vsubq_f32(_180, a), a);
a = vbslq_f32(vcltq_f32(y, z), vsubq_f32(_360, a), a);
vst1q_f32(angle + i, vmulq_f32(a, scale4));
c = ax/(ay + static_cast<T>(DBL_EPSILON));
c2 = c*c;
a = 90.f - (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
}
if( x < 0 )
a = 180.f - a;
if( y < 0 )
a = 360.f - a;
return a;
}
template <typename T>
static inline void atanImpl(const T *Y, const T *X, T *angle, int len, bool angleInDegrees)
{
int i = 0;
T scale = angleInDegrees ? 1 : static_cast<T>(CV_PI/180);
#if CV_SIMD128
i = v_atan<T>(scale)(len, Y, X, angle);
#endif
for( ; i < len; i++ )
{
float x = X[i], y = Y[i];
float ax = std::abs(x), ay = std::abs(y);
float a, c, c2;
if( ax >= ay )
{
c = ay/(ax + (float)DBL_EPSILON);
c2 = c*c;
a = (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
}
else
{
c = ax/(ay + (float)DBL_EPSILON);
c2 = c*c;
a = 90.f - (((atan2_p7*c2 + atan2_p5)*c2 + atan2_p3)*c2 + atan2_p1)*c;
}
if( x < 0 )
a = 180.f - a;
if( y < 0 )
a = 360.f - a;
angle[i] = (float)(a*scale);
angle[i] = atanImpl<T>(Y[i], X[i]) * scale;
}
}
} // anonymous::
namespace cv { namespace hal {
///////////////////////////////////// ATAN2 ////////////////////////////////////
void fastAtan32f(const float *Y, const float *X, float *angle, int len, bool angleInDegrees )
{
CALL_HAL(fastAtan32f, cv_hal_fastAtan32f, Y, X, angle, len, angleInDegrees);
atanImpl<float>(Y, X, angle, len, angleInDegrees);
}
void fastAtan64f(const double *Y, const double *X, double *angle, int len, bool angleInDegrees)
{
CALL_HAL(fastAtan64f, cv_hal_fastAtan64f, Y, X, angle, len, angleInDegrees);
atanImpl<double>(Y, X, angle, len, angleInDegrees);
}
// deprecated
void fastAtan2(const float *Y, const float *X, float *angle, int len, bool angleInDegrees )
{
fastAtan32f(Y, X, angle, len, angleInDegrees);
}
void magnitude32f(const float* x, const float* y, float* mag, int len)
{
CALL_HAL(magnitude32f, cv_hal_magnitude32f, x, y, mag, len);
#if defined HAVE_IPP
CV_IPP_CHECK()
{
@ -188,6 +260,7 @@ void magnitude32f(const float* x, const float* y, float* mag, int len)
void magnitude64f(const double* x, const double* y, double* mag, int len)
{
CALL_HAL(magnitude64f, cv_hal_magnitude64f, x, y, mag, len);
#if defined(HAVE_IPP)
CV_IPP_CHECK()
{
@ -225,6 +298,7 @@ void magnitude64f(const double* x, const double* y, double* mag, int len)
void invSqrt32f(const float* src, float* dst, int len)
{
CALL_HAL(invSqrt32f, cv_hal_invSqrt32f, src, dst, len);
#if defined(HAVE_IPP)
CV_IPP_CHECK()
{
@ -256,6 +330,7 @@ void invSqrt32f(const float* src, float* dst, int len)
void invSqrt64f(const double* src, double* dst, int len)
{
CALL_HAL(invSqrt64f, cv_hal_invSqrt64f, src, dst, len);
int i = 0;
#if CV_SSE2
@ -271,6 +346,7 @@ void invSqrt64f(const double* src, double* dst, int len)
void sqrt32f(const float* src, float* dst, int len)
{
CALL_HAL(sqrt32f, cv_hal_sqrt32f, src, dst, len);
#if defined(HAVE_IPP)
CV_IPP_CHECK()
{
@ -302,6 +378,7 @@ void sqrt32f(const float* src, float* dst, int len)
void sqrt64f(const double* src, double* dst, int len)
{
CALL_HAL(sqrt64f, cv_hal_sqrt64f, src, dst, len);
#if defined(HAVE_IPP)
CV_IPP_CHECK()
{
@ -433,6 +510,7 @@ static const double exp_max_val = 3000.*(1 << EXPTAB_SCALE); // log10(DBL_MAX) <
void exp32f( const float *_x, float *y, int n )
{
CALL_HAL(exp32f, cv_hal_exp32f, _x, y, n);
static const float
A4 = (float)(1.000000000000002438532970795181890933776 / EXPPOLY_32F_A0),
A3 = (float)(.6931471805521448196800669615864773144641 / EXPPOLY_32F_A0),
@ -632,6 +710,7 @@ void exp32f( const float *_x, float *y, int n )
void exp64f( const double *_x, double *y, int n )
{
CALL_HAL(exp64f, cv_hal_exp64f, _x, y, n);
static const double
A5 = .99999999999999999998285227504999 / EXPPOLY_32F_A0,
A4 = .69314718055994546743029643825322 / EXPPOLY_32F_A0,
@ -1076,6 +1155,7 @@ static const double ln_2 = 0.69314718055994530941723212145818;
void log32f( const float *_x, float *y, int n )
{
CALL_HAL(log32f, cv_hal_log32f, _x, y, n);
static const float shift[] = { 0, -1.f/512 };
static const float
A0 = 0.3333333333333333333333333f,
@ -1220,6 +1300,7 @@ void log32f( const float *_x, float *y, int n )
void log64f( const double *x, double *y, int n )
{
CALL_HAL(log64f, cv_hal_log64f, x, y, n);
static const double shift[] = { 0, -1./512 };
static const double
A7 = 1.0,
@ -1457,4 +1538,10 @@ void invSqrt(const double* src, double* dst, int len)
}
}} // cv::hal::
} // cv::hal::
} // cv::
float cv::fastAtan2( float y, float x )
{
return atanImpl<float>(y, x);
}

View File

@ -69,8 +69,8 @@ template<typename R> struct TheTest
EXPECT_EQ(d, res);
// zero, all
Data<R> resZ = RegTrait<R>::zero();
Data<R> resV = RegTrait<R>::all(8);
Data<R> resZ = V_RegTrait128<LaneType>::zero();
Data<R> resV = V_RegTrait128<LaneType>::all(8);
for (int i = 0; i < R::nlanes; ++i)
{
EXPECT_EQ((LaneType)0, resZ[i]);
@ -135,7 +135,7 @@ template<typename R> struct TheTest
// v_expand and v_load_expand
TheTest & test_expand()
{
typedef typename RegTrait<R>::w_reg Rx2;
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
Data<R> dataA;
R a = dataA;
@ -158,7 +158,7 @@ template<typename R> struct TheTest
TheTest & test_expand_q()
{
typedef typename RegTrait<R>::q_reg Rx4;
typedef typename V_RegTrait128<LaneType>::q_reg Rx4;
Data<R> data;
Data<Rx4> out = v_load_expand_q(data.d);
const int n = Rx4::nlanes;
@ -232,7 +232,7 @@ template<typename R> struct TheTest
TheTest & test_mul_expand()
{
typedef typename RegTrait<R>::w_reg Rx2;
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
Data<R> dataA, dataB(2);
R a = dataA, b = dataB;
Rx2 c, d;
@ -295,7 +295,7 @@ template<typename R> struct TheTest
TheTest & test_dot_prod()
{
typedef typename RegTrait<R>::w_reg Rx2;
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
Data<R> dataA, dataB(2);
R a = dataA, b = dataB;
@ -361,7 +361,7 @@ template<typename R> struct TheTest
TheTest & test_absdiff()
{
typedef typename RegTrait<R>::u_reg Ru;
typedef typename V_RegTrait128<LaneType>::u_reg Ru;
typedef typename Ru::lane_type u_type;
Data<R> dataA(std::numeric_limits<LaneType>::max()),
dataB(std::numeric_limits<LaneType>::min());
@ -445,7 +445,7 @@ template<typename R> struct TheTest
template <int s>
TheTest & test_pack()
{
typedef typename RegTrait<R>::w_reg Rx2;
typedef typename V_RegTrait128<LaneType>::w_reg Rx2;
typedef typename Rx2::lane_type w_type;
Data<Rx2> dataA, dataB;
dataA += std::numeric_limits<LaneType>::is_signed ? -10 : 10;
@ -480,8 +480,8 @@ template<typename R> struct TheTest
template <int s>
TheTest & test_pack_u()
{
typedef typename RegTrait<R>::w_reg Rx2;
typedef typename RegTrait<Rx2>::int_reg Ri2;
typedef typename V_TypeTraits<LaneType>::w_type LaneType_w;
typedef typename V_RegTrait128<LaneType_w>::int_reg Ri2;
typedef typename Ri2::lane_type w_type;
Data<Ri2> dataA, dataB;
@ -572,7 +572,7 @@ template<typename R> struct TheTest
TheTest & test_float_math()
{
typedef typename RegTrait<R>::int_reg Ri;
typedef typename V_RegTrait128<LaneType>::int_reg Ri;
Data<R> data1, data2, data3;
data1 *= 1.1;
data2 += 10;

View File

@ -155,80 +155,4 @@ template <typename R> std::ostream & operator<<(std::ostream & out, const Data<R
return out;
}
//==================================================================================================
template <typename R> struct RegTrait;
template <> struct RegTrait<cv::v_uint8x16> {
typedef cv::v_uint16x8 w_reg;
typedef cv::v_uint32x4 q_reg;
typedef cv::v_uint8x16 u_reg;
static cv::v_uint8x16 zero() { return cv::v_setzero_u8(); }
static cv::v_uint8x16 all(uchar val) { return cv::v_setall_u8(val); }
};
template <> struct RegTrait<cv::v_int8x16> {
typedef cv::v_int16x8 w_reg;
typedef cv::v_int32x4 q_reg;
typedef cv::v_uint8x16 u_reg;
static cv::v_int8x16 zero() { return cv::v_setzero_s8(); }
static cv::v_int8x16 all(schar val) { return cv::v_setall_s8(val); }
};
template <> struct RegTrait<cv::v_uint16x8> {
typedef cv::v_uint32x4 w_reg;
typedef cv::v_int16x8 int_reg;
typedef cv::v_uint16x8 u_reg;
static cv::v_uint16x8 zero() { return cv::v_setzero_u16(); }
static cv::v_uint16x8 all(ushort val) { return cv::v_setall_u16(val); }
};
template <> struct RegTrait<cv::v_int16x8> {
typedef cv::v_int32x4 w_reg;
typedef cv::v_uint16x8 u_reg;
static cv::v_int16x8 zero() { return cv::v_setzero_s16(); }
static cv::v_int16x8 all(short val) { return cv::v_setall_s16(val); }
};
template <> struct RegTrait<cv::v_uint32x4> {
typedef cv::v_uint64x2 w_reg;
typedef cv::v_int32x4 int_reg;
typedef cv::v_uint32x4 u_reg;
static cv::v_uint32x4 zero() { return cv::v_setzero_u32(); }
static cv::v_uint32x4 all(unsigned val) { return cv::v_setall_u32(val); }
};
template <> struct RegTrait<cv::v_int32x4> {
typedef cv::v_int64x2 w_reg;
typedef cv::v_uint32x4 u_reg;
static cv::v_int32x4 zero() { return cv::v_setzero_s32(); }
static cv::v_int32x4 all(int val) { return cv::v_setall_s32(val); }
};
template <> struct RegTrait<cv::v_uint64x2> {
static cv::v_uint64x2 zero() { return cv::v_setzero_u64(); }
static cv::v_uint64x2 all(uint64 val) { return cv::v_setall_u64(val); }
};
template <> struct RegTrait<cv::v_int64x2> {
static cv::v_int64x2 zero() { return cv::v_setzero_s64(); }
static cv::v_int64x2 all(int64 val) { return cv::v_setall_s64(val); }
};
template <> struct RegTrait<cv::v_float32x4> {
typedef cv::v_int32x4 int_reg;
typedef cv::v_float32x4 u_reg;
static cv::v_float32x4 zero() { return cv::v_setzero_f32(); }
static cv::v_float32x4 all(float val) { return cv::v_setall_f32(val); }
};
#if CV_SIMD128_64F
template <> struct RegTrait<cv::v_float64x2> {
typedef cv::v_int32x4 int_reg;
typedef cv::v_float64x2 u_reg;
static cv::v_float64x2 zero() { return cv::v_setzero_f64(); }
static cv::v_float64x2 all(double val) { return cv::v_setall_f64(val); }
};
#endif
#endif

View File

@ -2411,8 +2411,9 @@ TEST(Core_SolvePoly, regression_5599)
class Core_PhaseTest : public cvtest::BaseTest
{
int t;
public:
Core_PhaseTest() {}
Core_PhaseTest(int t_) : t(t_) {}
~Core_PhaseTest() {}
protected:
virtual void run(int)
@ -2421,9 +2422,9 @@ protected:
const int axisCount = 8;
const int dim = theRNG().uniform(1,10);
const float scale = theRNG().uniform(1.f, 100.f);
Mat x(axisCount + 1, dim, CV_32FC1),
y(axisCount + 1, dim, CV_32FC1);
Mat anglesInDegrees(axisCount + 1, dim, CV_32FC1);
Mat x(axisCount + 1, dim, t),
y(axisCount + 1, dim, t);
Mat anglesInDegrees(axisCount + 1, dim, t);
// fill the data
x.row(0).setTo(Scalar(0));
@ -2696,8 +2697,8 @@ TEST(Core_SVD, accuracy) { Core_SVDTest test; test.safe_run(); }
TEST(Core_SVBkSb, accuracy) { Core_SVBkSbTest test; test.safe_run(); }
TEST(Core_Trace, accuracy) { Core_TraceTest test; test.safe_run(); }
TEST(Core_SolvePoly, accuracy) { Core_SolvePolyTest test; test.safe_run(); }
TEST(Core_Phase, accuracy) { Core_PhaseTest test; test.safe_run(); }
TEST(Core_Phase, accuracy32f) { Core_PhaseTest test(CV_32FC1); test.safe_run(); }
TEST(Core_Phase, accuracy64f) { Core_PhaseTest test(CV_64FC1); test.safe_run(); }
TEST(Core_SVD, flt)
{

View File

@ -812,7 +812,7 @@ void AKAZEFeatures::Compute_Main_Orientation(KeyPoint& kpt, const std::vector<TE
}
}
}
hal::fastAtan2(resY, resX, Ang, ang_size, false);
hal::fastAtan32f(resY, resX, Ang, ang_size, false);
// Loop slides pi/3 window around feature point
for (ang1 = 0; ang1 < (float)(2.0 * CV_PI); ang1 += 0.15f) {
ang2 = (ang1 + (float)(CV_PI / 3.0) >(float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0));