Enable runtime type definition in kernels
This commit is contained in:
parent
fd1528795e
commit
1db20099a9
@ -64,7 +64,14 @@ namespace cv
|
||||
|
||||
static const int OPT_SIZE = 100;
|
||||
|
||||
static const char * T_ARR [] = {"uchar", "char", "ushort", "short", "int", "float", "double"};
|
||||
static const char * T_ARR [] = {
|
||||
"uchar",
|
||||
"char",
|
||||
"ushort",
|
||||
"short",
|
||||
"int",
|
||||
"float -D T_FLOAT",
|
||||
"double"};
|
||||
|
||||
template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
|
||||
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
@ -100,7 +107,7 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
|
||||
|
||||
std::string kernelName = "BruteForceMatch_UnrollMatch";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -126,7 +133,6 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
sprintf(opt,
|
||||
"-D T=%s -D DIST_TYPE=%d -D BLOCK_SIZE=%d",
|
||||
T_ARR[query.depth()], distType, block_size);
|
||||
|
||||
if(globalSize[0] != 0)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&query.data ));
|
||||
@ -143,7 +149,7 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
|
||||
std::string kernelName = "BruteForceMatch_Match";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -192,7 +198,7 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
|
||||
|
||||
std::string kernelName = "BruteForceMatch_RadiusUnrollMatch";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -234,7 +240,7 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
|
||||
|
||||
std::string kernelName = "BruteForceMatch_RadiusMatch";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -330,7 +336,7 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
|
||||
|
||||
std::string kernelName = "BruteForceMatch_knnUnrollMatch";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -366,7 +372,7 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
|
||||
|
||||
std::string kernelName = "BruteForceMatch_knnMatch";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -403,7 +409,7 @@ void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat
|
||||
|
||||
std::string kernelName = "BruteForceMatch_calcDistanceUnrolled";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -438,7 +444,7 @@ void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask
|
||||
|
||||
std::string kernelName = "BruteForceMatch_calcDistance";
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, query.depth(), opt);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1, opt);
|
||||
}
|
||||
}
|
||||
|
||||
@ -500,7 +506,7 @@ void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const o
|
||||
//args.push_back( make_pair( sizeof(cl_int), (void *)&train.cols ));
|
||||
//args.push_back( make_pair( sizeof(cl_int), (void *)&query.step ));
|
||||
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, trainIdx.depth(), -1);
|
||||
openCLExecuteKernel(ctx, &brute_force_match, kernelName, globalSize, localSize, args, -1, -1);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -65,7 +65,7 @@
|
||||
int bit1Count(int x)
|
||||
{
|
||||
int c = 0;
|
||||
int ix = (int)x;
|
||||
int ix = x;
|
||||
for (int i = 0 ; i < 32 ; i++)
|
||||
{
|
||||
c += ix & 0x1;
|
||||
@ -74,42 +74,60 @@ int bit1Count(int x)
|
||||
return c;
|
||||
}
|
||||
|
||||
#if (DIST_TYPE == 0)
|
||||
#define DIST(x, y) fabs((x) - (y))
|
||||
#elif (DIST_TYPE == 1)
|
||||
// dirty fix for non-template support
|
||||
#if (DIST_TYPE == 0) // L1Dist
|
||||
# ifdef T_FLOAT
|
||||
# define DIST(x, y) fabs((x) - (y))
|
||||
typedef float value_type;
|
||||
typedef float result_type;
|
||||
# else
|
||||
# define DIST(x, y) abs((x) - (y))
|
||||
typedef int value_type;
|
||||
typedef int result_type;
|
||||
# endif
|
||||
#elif (DIST_TYPE == 1) // L2Dist
|
||||
#define DIST(x, y) (((x) - (y)) * ((x) - (y)))
|
||||
#elif (DIST_TYPE == 2)
|
||||
#define DIST(x, y) bit1Count((uint)(x) ^ (uint)(y))
|
||||
#endif
|
||||
typedef float value_type;
|
||||
typedef float result_type;
|
||||
#elif (DIST_TYPE == 2) // Hamming
|
||||
#define DIST(x, y) bit1Count(((x) ^ (y))
|
||||
typedef int value_type;
|
||||
typedef int result_type;
|
||||
#endif
|
||||
|
||||
|
||||
float reduce_block(__local float *s_query,
|
||||
__local float *s_train,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
result_type reduce_block(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(s_query[lidy * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]);
|
||||
result += DIST(
|
||||
s_query[lidy * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
float reduce_multi_block(__local float *s_query,
|
||||
__local float *s_train,
|
||||
int block_index,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
result_type reduce_multi_block(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int block_index,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + lidx]);
|
||||
result += DIST(
|
||||
s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
@ -117,9 +135,9 @@ float reduce_multi_block(__local float *s_query,
|
||||
/* 2dim launch, global size: dim0 is (query rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, dim1 is BLOCK_SIZE
|
||||
local size: dim0 is BLOCK_SIZE, dim1 is BLOCK_SIZE.
|
||||
*/
|
||||
__kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
__kernel void BruteForceMatch_UnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
@ -131,13 +149,12 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
int step
|
||||
)
|
||||
{
|
||||
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
__local value_type *s_query = sharebuffer;
|
||||
__local value_type *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
// load the query into local memory.
|
||||
@ -155,7 +172,7 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
volatile int imgIdx = 0;
|
||||
for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++)
|
||||
{
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
@ -211,9 +228,9 @@ __kernel void BruteForceMatch_UnrollMatch_D5(
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void BruteForceMatch_Match_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
__kernel void BruteForceMatch_Match(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
@ -234,14 +251,13 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
int myBestTrainIdx = -1;
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
__local value_type *s_query = sharebuffer;
|
||||
__local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
// loop
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
//Dist dist;
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
@ -303,9 +319,9 @@ __kernel void BruteForceMatch_Match_D5(
|
||||
}
|
||||
|
||||
//radius_unrollmatch
|
||||
__kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
__kernel void BruteForceMatch_RadiusUnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
float maxDistance,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
@ -329,10 +345,10 @@ __kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
__local value_type *s_query = sharebuffer;
|
||||
__local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
@ -363,9 +379,9 @@ __kernel void BruteForceMatch_RadiusUnrollMatch_D5(
|
||||
}
|
||||
|
||||
//radius_match
|
||||
__kernel void BruteForceMatch_RadiusMatch_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
__kernel void BruteForceMatch_RadiusMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
float maxDistance,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
@ -389,10 +405,10 @@ __kernel void BruteForceMatch_RadiusMatch_D5(
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local float *s_query = sharebuffer;
|
||||
__local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
__local value_type *s_query = sharebuffer;
|
||||
__local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
@ -423,9 +439,9 @@ __kernel void BruteForceMatch_RadiusMatch_D5(
|
||||
}
|
||||
|
||||
|
||||
__kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
__kernel void BruteForceMatch_knnUnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int2 *bestTrainIdx,
|
||||
__global float2 *bestDistance,
|
||||
@ -442,8 +458,8 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
local float *s_query = sharebuffer;
|
||||
local float *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
local value_type *s_query = sharebuffer;
|
||||
local value_type *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
// load the query into local memory.
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
@ -461,7 +477,7 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
volatile int imgIdx = 0;
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
float result = 0;
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadX = lidx + i * BLOCK_SIZE;
|
||||
@ -569,9 +585,9 @@ __kernel void BruteForceMatch_knnUnrollMatch_D5(
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void BruteForceMatch_knnMatch_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
__kernel void BruteForceMatch_knnMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int2 *bestTrainIdx,
|
||||
__global float2 *bestDistance,
|
||||
@ -588,8 +604,8 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
local float *s_query = sharebuffer;
|
||||
local float *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
local value_type *s_query = sharebuffer;
|
||||
local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
float myBestDistance2 = MAX_FLOAT;
|
||||
@ -599,7 +615,7 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
//loop
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
float result = 0.0f;
|
||||
result_type result = 0.0f;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
@ -712,9 +728,9 @@ __kernel void BruteForceMatch_knnMatch_D5(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_calcDistanceUnrolled_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
kernel void BruteForceMatch_calcDistanceUnrolled(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global float *allDist,
|
||||
__local float *sharebuffer,
|
||||
@ -727,9 +743,9 @@ kernel void BruteForceMatch_calcDistanceUnrolled_D5(
|
||||
/* Todo */
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_calcDistance_D5(
|
||||
__global float *query,
|
||||
__global float *train,
|
||||
kernel void BruteForceMatch_calcDistance(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global float *allDist,
|
||||
__local float *sharebuffer,
|
||||
@ -742,7 +758,7 @@ kernel void BruteForceMatch_calcDistance_D5(
|
||||
/* Todo */
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_findBestMatch_D5(
|
||||
kernel void BruteForceMatch_findBestMatch(
|
||||
__global float *allDist,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
|
Loading…
x
Reference in New Issue
Block a user