Tutorials
This commit is contained in:
67
doc/tutorials/features2d.tex
Normal file
67
doc/tutorials/features2d.tex
Normal file
@@ -0,0 +1,67 @@
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% %
|
||||
% C++ %
|
||||
% %
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\ifCpp
|
||||
\section{Detection of planar objects}
|
||||
The goal of this tutorial is to learn how to use features2d and calib3d modules for detecting known planar objects in scenes.
|
||||
|
||||
\texttt{Test data}: use images in your data folder, for instance, box.png and box\_in\_scene.png.
|
||||
|
||||
Create a new console project. Read two input images. Example:
|
||||
\begin{lstlisting}
|
||||
Mat img1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
|
||||
\end{lstlisting}
|
||||
|
||||
Detect keypoints in both images. Example:
|
||||
\begin{lstlisting}
|
||||
// detecting keypoints
|
||||
FastFeatureDetector detector(15);
|
||||
vector<KeyPoint> keypoints1;
|
||||
detector.detect(img1, keypoints1);
|
||||
\end{lstlisting}
|
||||
|
||||
Compute descriptors for each of the keypoints. Example:
|
||||
\begin{lstlisting}
|
||||
// computing descriptors
|
||||
SurfDescriptorExtractor extractor;
|
||||
Mat descriptors1;
|
||||
extractor.compute(img1, keypoints1, descriptors1);
|
||||
\end{lstlisting}
|
||||
|
||||
Now, find the closest matches between descriptors from the first image to the second:
|
||||
\begin{lstlisting}
|
||||
// matching descriptors
|
||||
BruteForceMatcher<L2<float> > matcher;
|
||||
vector<DMatch> matches;
|
||||
matcher.match(descriptors1, descriptors2, matches);
|
||||
\end{lstlisting}
|
||||
|
||||
Visualize the results:
|
||||
\begin{lstlisting}
|
||||
// drawing the results
|
||||
namedWindow("matches", 1);
|
||||
Mat img_matches;
|
||||
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
|
||||
imshow("matches", img_matches);
|
||||
waitKey(0);
|
||||
\end{lstlisting}
|
||||
|
||||
Find the homography transformation between two sets of points:
|
||||
\begin{lstlisting}
|
||||
vector<Point2f> points1, points2;
|
||||
// fill the arrays with the points
|
||||
....
|
||||
Mat H = findHomography(Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold);
|
||||
\end{lstlisting}
|
||||
|
||||
Create a set of inlier matches and draw them. Use perspectiveTransform function to map points with homography:
|
||||
\begin{lstlisting}
|
||||
Mat points1Projected;
|
||||
perspectiveTransform(Mat(points1), points1Projected, H);
|
||||
\end{lstlisting}
|
||||
Use drawMatches for drawing inliers.
|
||||
\fi
|
Reference in New Issue
Block a user