|
|
|
@@ -49,31 +49,239 @@ using namespace cv::gpu;
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
|
// ============ old fashioned haar cascade ==============================================//
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() { throw_nogpu(); }
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&) { throw_nogpu(); }
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { throw_nogpu(); }
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; }
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::load(const string&) { throw_nogpu(); return true; }
|
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size(); }
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size) { throw_nogpu(); return 0; }
|
|
|
|
|
|
|
|
|
|
// ============ LBP cascade ==============================================//
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size /*frameSize*/){ throw_nogpu(); }
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP() { throw_nogpu(); }
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const { throw_nogpu(); return true; }
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string&) { throw_nogpu(); return true; }
|
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU_LBP::getClassifierSize() const { throw_nogpu(); return Size(); }
|
|
|
|
|
void cv::gpu::CascadeClassifier_GPU_LBP::allocateBuffers(cv::Size /*frame*/) { throw_nogpu();}
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const cv::gpu::GpuMat& /*image*/, cv::gpu::GpuMat& /*objectsBuf*/,
|
|
|
|
|
double /*scaleFactor*/, int /*minNeighbors*/, cv::Size /*maxObjectSize*/){ throw_nogpu(); return 0;}
|
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size();}
|
|
|
|
|
void cv::gpu::CascadeClassifier_GPU::release() { throw_nogpu(); }
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, double, int, Size) {throw_nogpu(); return -1;}
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat&, GpuMat&, Size, Size, double, int) {throw_nogpu(); return -1;}
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
|
|
|
|
{
|
|
|
|
|
public:
|
|
|
|
|
CascadeClassifierImpl(){}
|
|
|
|
|
virtual ~CascadeClassifierImpl(){}
|
|
|
|
|
|
|
|
|
|
virtual unsigned int process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
|
|
|
|
|
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize, cv::Size maxObjectSize) = 0;
|
|
|
|
|
|
|
|
|
|
virtual cv::Size getClassifierCvSize() const = 0;
|
|
|
|
|
virtual bool read(const string& classifierAsXml) = 0;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::HaarCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
|
|
|
|
{
|
|
|
|
|
public:
|
|
|
|
|
HaarCascade() : lastAllocatedFrameSize(-1, -1)
|
|
|
|
|
{
|
|
|
|
|
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool read(const string& filename)
|
|
|
|
|
{
|
|
|
|
|
ncvSafeCall( load(filename) );
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
|
|
|
|
|
bool findLargestObject, bool visualizeInPlace, cv::Size ncvMinSize,
|
|
|
|
|
/*out*/unsigned int& numDetections)
|
|
|
|
|
{
|
|
|
|
|
calculateMemReqsAndAllocate(src.size());
|
|
|
|
|
|
|
|
|
|
NCVMemPtr src_beg;
|
|
|
|
|
src_beg.ptr = (void*)src.ptr<Ncv8u>();
|
|
|
|
|
src_beg.memtype = NCVMemoryTypeDevice;
|
|
|
|
|
|
|
|
|
|
NCVMemSegment src_seg;
|
|
|
|
|
src_seg.begin = src_beg;
|
|
|
|
|
src_seg.size = src.step * src.rows;
|
|
|
|
|
|
|
|
|
|
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
|
|
|
|
|
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
|
|
|
|
|
|
|
|
|
CV_Assert(objects.rows == 1);
|
|
|
|
|
|
|
|
|
|
NCVMemPtr objects_beg;
|
|
|
|
|
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
|
|
|
|
|
objects_beg.memtype = NCVMemoryTypeDevice;
|
|
|
|
|
|
|
|
|
|
NCVMemSegment objects_seg;
|
|
|
|
|
objects_seg.begin = objects_beg;
|
|
|
|
|
objects_seg.size = objects.step * objects.rows;
|
|
|
|
|
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
|
|
|
|
|
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
|
|
|
|
|
|
|
|
|
NcvSize32u roi;
|
|
|
|
|
roi.width = d_src.width();
|
|
|
|
|
roi.height = d_src.height();
|
|
|
|
|
|
|
|
|
|
NcvSize32u winMinSize(ncvMinSize.width, ncvMinSize.height);
|
|
|
|
|
|
|
|
|
|
Ncv32u flags = 0;
|
|
|
|
|
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
|
|
|
|
|
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
|
|
|
|
|
|
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device(
|
|
|
|
|
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures,
|
|
|
|
|
winMinSize,
|
|
|
|
|
minNeighbors,
|
|
|
|
|
scaleStep, 1,
|
|
|
|
|
flags,
|
|
|
|
|
*gpuAllocator, *cpuAllocator, devProp, 0);
|
|
|
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned int process(const GpuMat& image, GpuMat& objectsBuf, float scaleFactor, int minNeighbors,
|
|
|
|
|
bool findLargestObject, bool visualizeInPlace, cv::Size minSize, cv::Size maxObjectSize)
|
|
|
|
|
{
|
|
|
|
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
|
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100;
|
|
|
|
|
if (objectsBuf.empty())
|
|
|
|
|
{
|
|
|
|
|
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::Size ncvMinSize = this->getClassifierCvSize();
|
|
|
|
|
|
|
|
|
|
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
|
|
|
|
|
{
|
|
|
|
|
ncvMinSize.width = minSize.width;
|
|
|
|
|
ncvMinSize.height = minSize.height;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned int numDetections;
|
|
|
|
|
ncvSafeCall(this->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections));
|
|
|
|
|
|
|
|
|
|
return numDetections;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }
|
|
|
|
|
|
|
|
|
|
NCVStatus load(const string& classifierFile)
|
|
|
|
|
{
|
|
|
|
|
int devId = cv::gpu::getDevice();
|
|
|
|
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
|
|
|
|
|
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
|
|
|
|
|
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
|
|
|
|
|
|
|
|
|
|
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
|
|
|
|
|
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
|
|
|
|
|
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);
|
|
|
|
|
|
|
|
|
|
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
|
|
|
|
|
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
|
|
|
|
|
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
|
|
|
|
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
|
|
|
|
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
|
|
|
|
|
{
|
|
|
|
|
if (lastAllocatedFrameSize == frameSize)
|
|
|
|
|
{
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate memory requirements and create real allocators
|
|
|
|
|
NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
|
|
|
|
|
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);
|
|
|
|
|
|
|
|
|
|
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
|
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
|
|
|
|
|
|
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
|
|
|
|
|
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
|
|
|
|
|
|
NcvSize32u roi;
|
|
|
|
|
roi.width = d_src.width();
|
|
|
|
|
roi.height = d_src.height();
|
|
|
|
|
Ncv32u numDetections;
|
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
|
|
|
|
|
|
|
|
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cudaDeviceProp devProp;
|
|
|
|
|
NCVStatus ncvStat;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
|
|
|
|
|
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
|
|
|
|
|
|
|
|
|
|
HaarClassifierCascadeDescriptor haar;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures;
|
|
|
|
|
|
|
|
|
|
Size lastAllocatedFrameSize;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVMemStackAllocator> gpuAllocator;
|
|
|
|
|
Ptr<NCVMemStackAllocator> cpuAllocator;
|
|
|
|
|
|
|
|
|
|
virtual ~HaarCascade(){}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
cv::Size operator -(const cv::Size& a, const cv::Size& b)
|
|
|
|
|
{
|
|
|
|
|
return cv::Size(a.width - b.width, a.height - b.height);
|
|
|
|
@@ -101,12 +309,17 @@ bool operator <=(const cv::Size& a, const cv::Size& b)
|
|
|
|
|
|
|
|
|
|
struct PyrLavel
|
|
|
|
|
{
|
|
|
|
|
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window) : order(_order)
|
|
|
|
|
PyrLavel(int _order, float _scale, cv::Size frame, cv::Size window, cv::Size minObjectSize)
|
|
|
|
|
{
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
order = _order;
|
|
|
|
|
scale = pow(_scale, order);
|
|
|
|
|
sFrame = frame / scale;
|
|
|
|
|
workArea = sFrame - window + 1;
|
|
|
|
|
sWindow = window * scale;
|
|
|
|
|
_order++;
|
|
|
|
|
} while (sWindow <= minObjectSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool isFeasible(cv::Size maxObj)
|
|
|
|
@@ -114,9 +327,9 @@ struct PyrLavel
|
|
|
|
|
return workArea.width > 0 && workArea.height > 0 && sWindow <= maxObj;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
PyrLavel next(float factor, cv::Size frame, cv::Size window)
|
|
|
|
|
PyrLavel next(float factor, cv::Size frame, cv::Size window, cv::Size minObjectSize)
|
|
|
|
|
{
|
|
|
|
|
return PyrLavel(order + 1, factor, frame, window);
|
|
|
|
|
return PyrLavel(order + 1, factor, frame, window, minObjectSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int order;
|
|
|
|
@@ -152,7 +365,7 @@ namespace cv { namespace gpu { namespace device
|
|
|
|
|
}
|
|
|
|
|
}}}
|
|
|
|
|
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::LbpCascade : cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
|
|
|
|
{
|
|
|
|
|
public:
|
|
|
|
|
struct Stage
|
|
|
|
@@ -162,44 +375,98 @@ public:
|
|
|
|
|
float threshold;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
bool read(const FileNode &root);
|
|
|
|
|
void allocateBuffers(cv::Size frame = cv::Size());
|
|
|
|
|
bool empty() const {return stage_mat.empty();}
|
|
|
|
|
LbpCascade(){}
|
|
|
|
|
virtual ~LbpCascade(){}
|
|
|
|
|
|
|
|
|
|
int process(const GpuMat& image, GpuMat& objects, double scaleFactor, int groupThreshold, cv::Size maxObjectSize);
|
|
|
|
|
virtual unsigned int process(const GpuMat& image, GpuMat& objects, float scaleFactor, int groupThreshold, bool findLargestObject,
|
|
|
|
|
bool visualizeInPlace, cv::Size minObjectSize, cv::Size maxObjectSize)
|
|
|
|
|
{
|
|
|
|
|
CV_Assert(scaleFactor > 1 && image.depth() == CV_8U);
|
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100;
|
|
|
|
|
const float grouping_eps = 0.2f;
|
|
|
|
|
|
|
|
|
|
if( !objects.empty() && objects.depth() == CV_32S)
|
|
|
|
|
objects.reshape(4, 1);
|
|
|
|
|
else
|
|
|
|
|
objects.create(1 , image.cols >> 4, CV_32SC4);
|
|
|
|
|
|
|
|
|
|
// used for debug
|
|
|
|
|
// candidates.setTo(cv::Scalar::all(0));
|
|
|
|
|
// objects.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
|
|
if (maxObjectSize == cv::Size())
|
|
|
|
|
maxObjectSize = image.size();
|
|
|
|
|
|
|
|
|
|
allocateBuffers(image.size());
|
|
|
|
|
|
|
|
|
|
unsigned int classified = 0;
|
|
|
|
|
GpuMat dclassified(1, 1, CV_32S);
|
|
|
|
|
cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) );
|
|
|
|
|
|
|
|
|
|
PyrLavel level(0, 1.0f, image.size(), NxM, minObjectSize);
|
|
|
|
|
|
|
|
|
|
while (level.isFeasible(maxObjectSize))
|
|
|
|
|
{
|
|
|
|
|
int acc = level.sFrame.width + 1;
|
|
|
|
|
float iniScale = level.scale;
|
|
|
|
|
|
|
|
|
|
cv::Size area = level.workArea;
|
|
|
|
|
int step = 1 + (level.scale <= 2.f);
|
|
|
|
|
|
|
|
|
|
int total = 0, prev = 0;
|
|
|
|
|
|
|
|
|
|
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize))
|
|
|
|
|
{
|
|
|
|
|
// create sutable matrix headers
|
|
|
|
|
GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height));
|
|
|
|
|
GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1));
|
|
|
|
|
GpuMat buff = integralBuffer;
|
|
|
|
|
|
|
|
|
|
// generate integral for scale
|
|
|
|
|
gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR);
|
|
|
|
|
gpu::integralBuffered(src, sint, buff);
|
|
|
|
|
|
|
|
|
|
// calculate job
|
|
|
|
|
int totalWidth = level.workArea.width / step;
|
|
|
|
|
total += totalWidth * (level.workArea.height / step);
|
|
|
|
|
|
|
|
|
|
// go to next pyramide level
|
|
|
|
|
level = level.next(scaleFactor, image.size(), NxM, minObjectSize);
|
|
|
|
|
area = level.workArea;
|
|
|
|
|
|
|
|
|
|
step = (1 + (level.scale <= 2.f));
|
|
|
|
|
prev = acc;
|
|
|
|
|
acc += level.sFrame.width + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat,
|
|
|
|
|
leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (groupThreshold <= 0 || objects.empty())
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
|
|
|
|
|
device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>());
|
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
|
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
|
return classified;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
virtual cv::Size getClassifierCvSize() const { return NxM; }
|
|
|
|
|
|
|
|
|
|
bool read(const string& classifierAsXml)
|
|
|
|
|
{
|
|
|
|
|
FileStorage fs(classifierAsXml, FileStorage::READ);
|
|
|
|
|
return fs.isOpened() ? read(fs.getFirstTopLevelNode()) : false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
enum stage { BOOST = 0 };
|
|
|
|
|
enum feature { LBP = 0 };
|
|
|
|
|
|
|
|
|
|
static const stage stageType = BOOST;
|
|
|
|
|
static const feature featureType = LBP;
|
|
|
|
|
|
|
|
|
|
cv::Size NxM;
|
|
|
|
|
bool isStumps;
|
|
|
|
|
int ncategories;
|
|
|
|
|
int subsetSize;
|
|
|
|
|
int nodeStep;
|
|
|
|
|
|
|
|
|
|
// gpu representation of classifier
|
|
|
|
|
GpuMat stage_mat;
|
|
|
|
|
GpuMat trees_mat;
|
|
|
|
|
GpuMat nodes_mat;
|
|
|
|
|
GpuMat leaves_mat;
|
|
|
|
|
GpuMat subsets_mat;
|
|
|
|
|
GpuMat features_mat;
|
|
|
|
|
|
|
|
|
|
GpuMat integral;
|
|
|
|
|
GpuMat integralBuffer;
|
|
|
|
|
GpuMat resuzeBuffer;
|
|
|
|
|
|
|
|
|
|
GpuMat candidates;
|
|
|
|
|
static const int integralFactor = 4;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
void cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl::allocateBuffers(cv::Size frame)
|
|
|
|
|
{
|
|
|
|
|
void allocateBuffers(cv::Size frame)
|
|
|
|
|
{
|
|
|
|
|
if (frame == cv::Size())
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
@@ -221,11 +488,10 @@ void cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl::allocateBuffers(
|
|
|
|
|
|
|
|
|
|
candidates.create(1 , frame.width >> 1, CV_32SC4);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// currently only stump based boost classifiers are supported
|
|
|
|
|
bool CascadeClassifier_GPU_LBP::CascadeClassifierImpl::read(const FileNode &root)
|
|
|
|
|
{
|
|
|
|
|
bool read(const FileNode &root)
|
|
|
|
|
{
|
|
|
|
|
const char *GPU_CC_STAGE_TYPE = "stageType";
|
|
|
|
|
const char *GPU_CC_FEATURE_TYPE = "featureType";
|
|
|
|
|
const char *GPU_CC_BOOST = "BOOST";
|
|
|
|
@@ -363,336 +629,97 @@ bool CascadeClassifier_GPU_LBP::CascadeClassifierImpl::read(const FileNode &root
|
|
|
|
|
features_mat.upload(cv::Mat(features).reshape(4,1));
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifierImpl::process(const GpuMat& image, GpuMat& objects, double scaleFactor, int groupThreshold, cv::Size maxObjectSize)
|
|
|
|
|
{
|
|
|
|
|
CV_Assert(!empty() && scaleFactor > 1 && image.depth() == CV_8U);
|
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100;
|
|
|
|
|
const float grouping_eps = 0.2f;
|
|
|
|
|
|
|
|
|
|
if( !objects.empty() && objects.depth() == CV_32S)
|
|
|
|
|
objects.reshape(4, 1);
|
|
|
|
|
else
|
|
|
|
|
objects.create(1 , image.cols >> 4, CV_32SC4);
|
|
|
|
|
|
|
|
|
|
// used for debug
|
|
|
|
|
// candidates.setTo(cv::Scalar::all(0));
|
|
|
|
|
// objects.setTo(cv::Scalar::all(0));
|
|
|
|
|
|
|
|
|
|
if (maxObjectSize == cv::Size())
|
|
|
|
|
maxObjectSize = image.size();
|
|
|
|
|
|
|
|
|
|
allocateBuffers(image.size());
|
|
|
|
|
|
|
|
|
|
unsigned int classified = 0;
|
|
|
|
|
GpuMat dclassified(1, 1, CV_32S);
|
|
|
|
|
cudaSafeCall( cudaMemcpy(dclassified.ptr(), &classified, sizeof(int), cudaMemcpyHostToDevice) );
|
|
|
|
|
|
|
|
|
|
PyrLavel level(0, 1.0f, image.size(), NxM);
|
|
|
|
|
|
|
|
|
|
while (level.isFeasible(maxObjectSize))
|
|
|
|
|
{
|
|
|
|
|
int acc = level.sFrame.width + 1;
|
|
|
|
|
float iniScale = level.scale;
|
|
|
|
|
|
|
|
|
|
cv::Size area = level.workArea;
|
|
|
|
|
int step = 1 + (level.scale <= 2.f);
|
|
|
|
|
|
|
|
|
|
int total = 0, prev = 0;
|
|
|
|
|
|
|
|
|
|
while (acc <= integralFactor * (image.cols + 1) && level.isFeasible(maxObjectSize))
|
|
|
|
|
{
|
|
|
|
|
// create sutable matrix headers
|
|
|
|
|
GpuMat src = resuzeBuffer(cv::Rect(0, 0, level.sFrame.width, level.sFrame.height));
|
|
|
|
|
GpuMat sint = integral(cv::Rect(prev, 0, level.sFrame.width + 1, level.sFrame.height + 1));
|
|
|
|
|
GpuMat buff = integralBuffer;
|
|
|
|
|
|
|
|
|
|
// generate integral for scale
|
|
|
|
|
gpu::resize(image, src, level.sFrame, 0, 0, CV_INTER_LINEAR);
|
|
|
|
|
gpu::integralBuffered(src, sint, buff);
|
|
|
|
|
|
|
|
|
|
// calculate job
|
|
|
|
|
int totalWidth = level.workArea.width / step;
|
|
|
|
|
// totalWidth = ((totalWidth + WARP_MASK) / WARP_SIZE) << WARP_LOG;
|
|
|
|
|
|
|
|
|
|
total += totalWidth * (level.workArea.height / step);
|
|
|
|
|
|
|
|
|
|
// go to next pyramide level
|
|
|
|
|
level = level.next(scaleFactor, image.size(), NxM);
|
|
|
|
|
area = level.workArea;
|
|
|
|
|
|
|
|
|
|
step = (1 + (level.scale <= 2.f));
|
|
|
|
|
prev = acc;
|
|
|
|
|
acc += level.sFrame.width + 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
device::lbp::classifyPyramid(image.cols, image.rows, NxM.width - 1, NxM.height - 1, iniScale, scaleFactor, total, stage_mat, stage_mat.cols / sizeof(Stage), nodes_mat,
|
|
|
|
|
leaves_mat, subsets_mat, features_mat, subsetSize, candidates, dclassified.ptr<unsigned int>(), integral);
|
|
|
|
|
}
|
|
|
|
|
enum stage { BOOST = 0 };
|
|
|
|
|
enum feature { LBP = 1, HAAR = 2 };
|
|
|
|
|
static const stage stageType = BOOST;
|
|
|
|
|
static const feature featureType = LBP;
|
|
|
|
|
|
|
|
|
|
if (groupThreshold <= 0 || objects.empty())
|
|
|
|
|
return 0;
|
|
|
|
|
cv::Size NxM;
|
|
|
|
|
bool isStumps;
|
|
|
|
|
int ncategories;
|
|
|
|
|
int subsetSize;
|
|
|
|
|
int nodeStep;
|
|
|
|
|
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
|
|
|
|
|
device::lbp::connectedConmonents(candidates, classified, objects, groupThreshold, grouping_eps, dclassified.ptr<unsigned int>());
|
|
|
|
|
// gpu representation of classifier
|
|
|
|
|
GpuMat stage_mat;
|
|
|
|
|
GpuMat trees_mat;
|
|
|
|
|
GpuMat nodes_mat;
|
|
|
|
|
GpuMat leaves_mat;
|
|
|
|
|
GpuMat subsets_mat;
|
|
|
|
|
GpuMat features_mat;
|
|
|
|
|
|
|
|
|
|
// candidates.copyTo(objects);
|
|
|
|
|
cudaSafeCall( cudaMemcpy(&classified, dclassified.ptr(), sizeof(int), cudaMemcpyDeviceToHost) );
|
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
|
return classified;
|
|
|
|
|
}
|
|
|
|
|
GpuMat integral;
|
|
|
|
|
GpuMat integralBuffer;
|
|
|
|
|
GpuMat resuzeBuffer;
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::CascadeClassifier_GPU_LBP(cv::Size detectionFrameSize) : impl(new CascadeClassifierImpl()) { (*impl).allocateBuffers(detectionFrameSize); }
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU_LBP::~CascadeClassifier_GPU_LBP(){ delete impl; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::empty() const
|
|
|
|
|
{
|
|
|
|
|
return (*impl).empty();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU_LBP::load(const string& classifierAsXml)
|
|
|
|
|
{
|
|
|
|
|
FileStorage fs(classifierAsXml, FileStorage::READ);
|
|
|
|
|
return fs.isOpened() ? (*impl).read(fs.getFirstTopLevelNode()) : false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU_LBP::detectMultiScale(const GpuMat& image, GpuMat& objects, double scaleFactor, int groupThreshold, cv::Size maxObjectSize)
|
|
|
|
|
{
|
|
|
|
|
return (*impl).process(image, objects, scaleFactor, groupThreshold, maxObjectSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// ============ old fashioned haar cascade ==============================================//
|
|
|
|
|
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
|
|
|
|
|
{
|
|
|
|
|
CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
|
|
|
|
|
{
|
|
|
|
|
ncvSetDebugOutputHandler(NCVDebugOutputHandler);
|
|
|
|
|
ncvSafeCall( load(filename) );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
|
|
|
|
|
bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize,
|
|
|
|
|
/*out*/unsigned int& numDetections)
|
|
|
|
|
{
|
|
|
|
|
calculateMemReqsAndAllocate(src.size());
|
|
|
|
|
|
|
|
|
|
NCVMemPtr src_beg;
|
|
|
|
|
src_beg.ptr = (void*)src.ptr<Ncv8u>();
|
|
|
|
|
src_beg.memtype = NCVMemoryTypeDevice;
|
|
|
|
|
|
|
|
|
|
NCVMemSegment src_seg;
|
|
|
|
|
src_seg.begin = src_beg;
|
|
|
|
|
src_seg.size = src.step * src.rows;
|
|
|
|
|
|
|
|
|
|
NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
|
|
|
|
|
ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
|
|
|
|
|
|
|
|
|
CV_Assert(objects.rows == 1);
|
|
|
|
|
|
|
|
|
|
NCVMemPtr objects_beg;
|
|
|
|
|
objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
|
|
|
|
|
objects_beg.memtype = NCVMemoryTypeDevice;
|
|
|
|
|
|
|
|
|
|
NCVMemSegment objects_seg;
|
|
|
|
|
objects_seg.begin = objects_beg;
|
|
|
|
|
objects_seg.size = objects.step * objects.rows;
|
|
|
|
|
NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
|
|
|
|
|
ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
|
|
|
|
|
|
|
|
|
|
NcvSize32u roi;
|
|
|
|
|
roi.width = d_src.width();
|
|
|
|
|
roi.height = d_src.height();
|
|
|
|
|
|
|
|
|
|
Ncv32u flags = 0;
|
|
|
|
|
flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
|
|
|
|
|
flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace : 0;
|
|
|
|
|
|
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device(
|
|
|
|
|
d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures,
|
|
|
|
|
ncvMinSize,
|
|
|
|
|
minNeighbors,
|
|
|
|
|
scaleStep, 1,
|
|
|
|
|
flags,
|
|
|
|
|
*gpuAllocator, *cpuAllocator, devProp, 0);
|
|
|
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NcvSize32u getClassifierSize() const { return haar.ClassifierSize; }
|
|
|
|
|
cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NCVStatus load(const string& classifierFile)
|
|
|
|
|
{
|
|
|
|
|
int devId = cv::gpu::getDevice();
|
|
|
|
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
// Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
|
|
|
|
|
gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
|
|
|
|
|
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);
|
|
|
|
|
|
|
|
|
|
h_haarStages = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
|
|
|
|
|
h_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
|
|
|
|
|
h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);
|
|
|
|
|
|
|
|
|
|
d_haarStages = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
|
|
|
|
|
d_haarNodes = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
|
|
|
|
|
d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
|
|
|
|
ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
|
|
|
|
ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
|
|
|
|
|
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
|
|
|
|
|
{
|
|
|
|
|
if (lastAllocatedFrameSize == frameSize)
|
|
|
|
|
{
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate memory requirements and create real allocators
|
|
|
|
|
NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
|
|
|
|
|
NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);
|
|
|
|
|
|
|
|
|
|
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
|
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
|
|
|
|
|
|
NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
|
|
|
|
|
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
|
|
|
|
|
|
|
|
|
NcvSize32u roi;
|
|
|
|
|
roi.width = d_src.width();
|
|
|
|
|
roi.height = d_src.height();
|
|
|
|
|
Ncv32u numDetections;
|
|
|
|
|
ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
|
|
|
|
|
*d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
|
|
|
|
|
|
|
|
|
|
ncvAssertReturnNcvStat(ncvStat);
|
|
|
|
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
|
|
|
|
|
|
|
|
|
gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
|
|
|
|
|
|
|
|
|
|
ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
|
|
|
|
|
ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
|
|
|
|
|
return NCV_SUCCESS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cudaDeviceProp devProp;
|
|
|
|
|
NCVStatus ncvStat;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
|
|
|
|
|
Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > h_haarStages;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > h_haarFeatures;
|
|
|
|
|
|
|
|
|
|
HaarClassifierCascadeDescriptor haar;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarStage64> > d_haarStages;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
|
|
|
|
|
Ptr<NCVVectorAlloc<HaarFeature64> > d_haarFeatures;
|
|
|
|
|
|
|
|
|
|
Size lastAllocatedFrameSize;
|
|
|
|
|
|
|
|
|
|
Ptr<NCVMemStackAllocator> gpuAllocator;
|
|
|
|
|
Ptr<NCVMemStackAllocator> cpuAllocator;
|
|
|
|
|
GpuMat candidates;
|
|
|
|
|
static const int integralFactor = 4;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()
|
|
|
|
|
: findLargestObject(false), visualizeInPlace(false), impl(0) {}
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename)
|
|
|
|
|
: findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
|
|
|
|
|
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
|
|
|
|
|
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
|
|
|
|
|
|
|
|
|
|
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
|
|
|
|
|
{
|
|
|
|
|
release();
|
|
|
|
|
impl = new CascadeClassifierImpl(filename);
|
|
|
|
|
return !this->empty();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
|
|
|
|
|
|
|
|
|
|
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
|
|
|
|
|
{
|
|
|
|
|
return this->empty() ? Size() : impl->getClassifierCvSize();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
|
|
|
|
|
{
|
|
|
|
|
CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
|
|
|
|
|
CV_Assert( !this->empty());
|
|
|
|
|
|
|
|
|
|
const int defaultObjSearchNum = 100;
|
|
|
|
|
if (objectsBuf.empty())
|
|
|
|
|
{
|
|
|
|
|
objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
NcvSize32u ncvMinSize = impl->getClassifierSize();
|
|
|
|
|
|
|
|
|
|
if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
|
|
|
|
|
{
|
|
|
|
|
ncvMinSize.width = minSize.width;
|
|
|
|
|
ncvMinSize.height = minSize.height;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
unsigned int numDetections;
|
|
|
|
|
ncvSafeCall( impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections) );
|
|
|
|
|
|
|
|
|
|
return numDetections;
|
|
|
|
|
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, cv::Size());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int cv::gpu::CascadeClassifier_GPU::detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize, double scaleFactor, int minNeighbors)
|
|
|
|
|
{
|
|
|
|
|
CV_Assert( !this->empty());
|
|
|
|
|
return impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, minSize, maxObjectSize);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
|
|
|
|
|
{
|
|
|
|
|
release();
|
|
|
|
|
|
|
|
|
|
std::string fext = filename.substr(filename.find_last_of(".") + 1);
|
|
|
|
|
std::transform(fext.begin(), fext.end(), fext.begin(), ::tolower);
|
|
|
|
|
|
|
|
|
|
if (fext == "nvbin")
|
|
|
|
|
{
|
|
|
|
|
impl = new HaarCascade();
|
|
|
|
|
return impl->read(filename);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FileStorage fs(filename, FileStorage::READ);
|
|
|
|
|
|
|
|
|
|
if (!fs.isOpened())
|
|
|
|
|
{
|
|
|
|
|
impl = new HaarCascade();
|
|
|
|
|
return impl->read(filename);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const char *GPU_CC_LBP = "LBP";
|
|
|
|
|
string featureTypeStr = (string)fs.getFirstTopLevelNode()["featureType"];
|
|
|
|
|
if (featureTypeStr == GPU_CC_LBP)
|
|
|
|
|
impl = new LbpCascade();
|
|
|
|
|
else
|
|
|
|
|
impl = new HaarCascade();
|
|
|
|
|
|
|
|
|
|
impl->read(filename);
|
|
|
|
|
return !this->empty();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
struct RectConvert
|
|
|
|
|
{
|
|
|
|
@@ -708,7 +735,6 @@ struct RectConvert
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
|
|
|
|
|
{
|
|
|
|
|
vector<Rect> rects(hypotheses.size());
|
|
|
|
|