added helper macros to the function declarations
This commit is contained in:
@@ -327,7 +327,8 @@ CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
|
||||
double sigma1, double sigma2=0,
|
||||
int borderType=BORDER_DEFAULT);
|
||||
//! initializes kernels of the generalized Sobel operator
|
||||
CV_EXPORTS void getDerivKernels( Mat& kx, Mat& ky, int dx, int dy, int ksize,
|
||||
CV_EXPORTS void getDerivKernels( CV_OUT Mat& kx, CV_OUT Mat& ky,
|
||||
int dx, int dy, int ksize,
|
||||
bool normalize=false, int ktype=CV_32F );
|
||||
//! returns filter engine for the generalized Sobel operator
|
||||
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
|
||||
@@ -335,16 +336,16 @@ CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! returns horizontal 1D box filter
|
||||
CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
|
||||
int ksize, int anchor=-1);
|
||||
int ksize, int anchor=-1);
|
||||
//! returns vertical 1D box filter
|
||||
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType,
|
||||
int ksize, int anchor=-1,
|
||||
double scale=1);
|
||||
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType,
|
||||
int ksize, int anchor=-1,
|
||||
double scale=1);
|
||||
//! returns box filter engine
|
||||
CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
|
||||
Point anchor=Point(-1,-1),
|
||||
bool normalize=true,
|
||||
int borderType=BORDER_DEFAULT);
|
||||
Point anchor=Point(-1,-1),
|
||||
bool normalize=true,
|
||||
int borderType=BORDER_DEFAULT);
|
||||
//! type of morphological operation
|
||||
enum { MORPH_ERODE=0, MORPH_DILATE=1, MORPH_OPEN=2, MORPH_CLOSE=3,
|
||||
MORPH_GRADIENT=4, MORPH_TOPHAT=5, MORPH_BLACKHAT=6 };
|
||||
@@ -374,27 +375,27 @@ CV_EXPORTS Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-
|
||||
template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();
|
||||
|
||||
//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
|
||||
CV_EXPORTS void copyMakeBorder( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void copyMakeBorder( const Mat& src, CV_OUT Mat& dst,
|
||||
int top, int bottom, int left, int right,
|
||||
int borderType, const Scalar& value=Scalar() );
|
||||
|
||||
//! smooths the image using median filter.
|
||||
CV_EXPORTS void medianBlur( const Mat& src, Mat& dst, int ksize );
|
||||
CV_EXPORTS void medianBlur( const Mat& src, CV_OUT Mat& dst, int ksize );
|
||||
//! smooths the image using Gaussian filter.
|
||||
CV_EXPORTS void GaussianBlur( const Mat& src, Mat& dst, Size ksize,
|
||||
CV_EXPORTS void GaussianBlur( const Mat& src, CV_OUT Mat& dst, Size ksize,
|
||||
double sigma1, double sigma2=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! smooths the image using bilateral filter
|
||||
CV_EXPORTS void bilateralFilter( const Mat& src, Mat& dst, int d,
|
||||
CV_EXPORTS void bilateralFilter( const Mat& src, CV_OUT Mat& dst, int d,
|
||||
double sigmaColor, double sigmaSpace,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! smooths the image using the box filter. Each pixel is processed in O(1) time
|
||||
CV_EXPORTS void boxFilter( const Mat& src, Mat& dst, int ddepth,
|
||||
CV_EXPORTS void boxFilter( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
Size ksize, Point anchor=Point(-1,-1),
|
||||
bool normalize=true,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
//! a synonym for normalized box filter
|
||||
static inline void blur( const Mat& src, Mat& dst,
|
||||
static inline void blur( const Mat& src, CV_OUT Mat& dst,
|
||||
Size ksize, Point anchor=Point(-1,-1),
|
||||
int borderType=BORDER_DEFAULT )
|
||||
{
|
||||
@@ -402,54 +403,54 @@ static inline void blur( const Mat& src, Mat& dst,
|
||||
}
|
||||
|
||||
//! applies non-separable 2D linear filter to the image
|
||||
CV_EXPORTS void filter2D( const Mat& src, Mat& dst, int ddepth,
|
||||
CV_EXPORTS void filter2D( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
const Mat& kernel, Point anchor=Point(-1,-1),
|
||||
double delta=0, int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies separable 2D linear filter to the image
|
||||
CV_EXPORTS void sepFilter2D( const Mat& src, Mat& dst, int ddepth,
|
||||
CV_EXPORTS void sepFilter2D( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
const Mat& kernelX, const Mat& kernelY,
|
||||
Point anchor=Point(-1,-1),
|
||||
double delta=0, int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies generalized Sobel operator to the image
|
||||
CV_EXPORTS void Sobel( const Mat& src, Mat& dst, int ddepth,
|
||||
CV_EXPORTS void Sobel( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
int dx, int dy, int ksize=3,
|
||||
double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies the vertical or horizontal Scharr operator to the image
|
||||
CV_EXPORTS void Scharr( const Mat& src, Mat& dst, int ddepth,
|
||||
CV_EXPORTS void Scharr( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
int dx, int dy, double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies Laplacian operator to the image
|
||||
CV_EXPORTS void Laplacian( const Mat& src, Mat& dst, int ddepth,
|
||||
CV_EXPORTS void Laplacian( const Mat& src, CV_OUT Mat& dst, int ddepth,
|
||||
int ksize=1, double scale=1, double delta=0,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! applies Canny edge detector and produces the edge map.
|
||||
CV_EXPORTS void Canny( const Mat& image, Mat& edges,
|
||||
CV_EXPORTS void Canny( const Mat& image, CV_OUT Mat& edges,
|
||||
double threshold1, double threshold2,
|
||||
int apertureSize=3, bool L2gradient=false );
|
||||
|
||||
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
|
||||
CV_EXPORTS void cornerMinEigenVal( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void cornerMinEigenVal( const Mat& src, CV_OUT Mat& dst,
|
||||
int blockSize, int ksize=3,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! computes Harris cornerness criteria at each image pixel
|
||||
CV_EXPORTS void cornerHarris( const Mat& src, Mat& dst, int blockSize,
|
||||
CV_EXPORTS void cornerHarris( const Mat& src, CV_OUT Mat& dst, int blockSize,
|
||||
int ksize, double k,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
|
||||
CV_EXPORTS void cornerEigenValsAndVecs( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void cornerEigenValsAndVecs( const Mat& src, CV_OUT Mat& dst,
|
||||
int blockSize, int ksize,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! computes another complex cornerness criteria at each pixel
|
||||
CV_EXPORTS void preCornerDetect( const Mat& src, Mat& dst, int ksize,
|
||||
CV_EXPORTS void preCornerDetect( const Mat& src, CV_OUT Mat& dst, int ksize,
|
||||
int borderType=BORDER_DEFAULT );
|
||||
|
||||
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
|
||||
@@ -458,41 +459,42 @@ CV_EXPORTS void cornerSubPix( const Mat& image, vector<Point2f>& corners,
|
||||
TermCriteria criteria );
|
||||
|
||||
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
|
||||
CV_EXPORTS void goodFeaturesToTrack( const Mat& image, vector<Point2f>& corners,
|
||||
CV_EXPORTS void goodFeaturesToTrack( const Mat& image, CV_OUT vector<Point2f>& corners,
|
||||
int maxCorners, double qualityLevel, double minDistance,
|
||||
const Mat& mask=Mat(), int blockSize=3,
|
||||
bool useHarrisDetector=false, double k=0.04 );
|
||||
|
||||
//! finds lines in the black-n-white image using the standard or pyramid Hough transform
|
||||
CV_EXPORTS void HoughLines( const Mat& image, vector<Vec2f>& lines,
|
||||
CV_EXPORTS void HoughLines( const Mat& image, CV_OUT vector<Vec2f>& lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn=0, double stn=0 );
|
||||
|
||||
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
||||
CV_EXPORTS void HoughLinesP( Mat& image, vector<Vec4i>& lines,
|
||||
CV_EXPORTS void HoughLinesP( Mat& image, CV_OUT vector<Vec4i>& lines,
|
||||
double rho, double theta, int threshold,
|
||||
double minLineLength=0, double maxLineGap=0 );
|
||||
|
||||
//! finds circles in the grayscale image using 2+1 gradient Hough transform
|
||||
CV_EXPORTS void HoughCircles( const Mat& image, vector<Vec3f>& circles,
|
||||
CV_EXPORTS void HoughCircles( const Mat& image, CV_OUT vector<Vec3f>& circles,
|
||||
int method, double dp, double minDist,
|
||||
double param1=100, double param2=100,
|
||||
int minRadius=0, int maxRadius=0 );
|
||||
|
||||
//! erodes the image (applies the local minimum operator)
|
||||
CV_EXPORTS void erode( const Mat& src, Mat& dst, const Mat& kernel,
|
||||
CV_EXPORTS void erode( const Mat& src, CV_OUT Mat& dst, const Mat& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
|
||||
//! dilates the image (applies the local maximum operator)
|
||||
CV_EXPORTS void dilate( const Mat& src, Mat& dst, const Mat& kernel,
|
||||
CV_EXPORTS void dilate( const Mat& src, CV_OUT Mat& dst, const Mat& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
|
||||
//! applies an advanced morphological operation to the image
|
||||
CV_EXPORTS void morphologyEx( const Mat& src, Mat& dst, int op, const Mat& kernel,
|
||||
CV_EXPORTS void morphologyEx( const Mat& src, CV_OUT Mat& dst,
|
||||
int op, const Mat& kernel,
|
||||
Point anchor=Point(-1,-1), int iterations=1,
|
||||
int borderType=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=morphologyDefaultBorderValue() );
|
||||
@@ -510,19 +512,19 @@ enum
|
||||
};
|
||||
|
||||
//! resizes the image
|
||||
CV_EXPORTS void resize( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void resize( const Mat& src, CV_OUT Mat& dst,
|
||||
Size dsize, double fx=0, double fy=0,
|
||||
int interpolation=INTER_LINEAR );
|
||||
|
||||
//! warps the image using affine transformation
|
||||
CV_EXPORTS void warpAffine( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void warpAffine( const Mat& src, CV_OUT Mat& dst,
|
||||
const Mat& M, Size dsize,
|
||||
int flags=INTER_LINEAR,
|
||||
int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
|
||||
//! warps the image using perspective transformation
|
||||
CV_EXPORTS void warpPerspective( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void warpPerspective( const Mat& src, CV_OUT Mat& dst,
|
||||
const Mat& M, Size dsize,
|
||||
int flags=INTER_LINEAR,
|
||||
int borderMode=BORDER_CONSTANT,
|
||||
@@ -533,12 +535,13 @@ enum { INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
|
||||
INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE };
|
||||
|
||||
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
|
||||
CV_EXPORTS void remap( const Mat& src, Mat& dst, const Mat& map1, const Mat& map2,
|
||||
CV_EXPORTS void remap( const Mat& src, CV_OUT Mat& dst, const Mat& map1, const Mat& map2,
|
||||
int interpolation, int borderMode=BORDER_CONSTANT,
|
||||
const Scalar& borderValue=Scalar());
|
||||
|
||||
//! converts maps for remap from floating-point to fixed-point format or backwards
|
||||
CV_EXPORTS void convertMaps( const Mat& map1, const Mat& map2, Mat& dstmap1, Mat& dstmap2,
|
||||
CV_EXPORTS void convertMaps( const Mat& map1, const Mat& map2,
|
||||
CV_OUT Mat& dstmap1, CV_OUT Mat& dstmap2,
|
||||
int dstmap1type, bool nninterpolation=false );
|
||||
|
||||
//! returns 2x3 affine transformation matrix for the planar rotation.
|
||||
@@ -548,28 +551,28 @@ CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[]
|
||||
//! returns 2x3 affine transformation for the corresponding 3 point pairs.
|
||||
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
|
||||
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
|
||||
CV_EXPORTS void invertAffineTransform(const Mat& M, Mat& iM);
|
||||
CV_EXPORTS void invertAffineTransform( const Mat& M, CV_OUT Mat& iM );
|
||||
|
||||
//! extracts rectangle from the image at sub-pixel location
|
||||
CV_EXPORTS void getRectSubPix( const Mat& image, Size patchSize,
|
||||
Point2f center, Mat& patch, int patchType=-1 );
|
||||
Point2f center, CV_OUT Mat& patch, int patchType=-1 );
|
||||
|
||||
//! computes the integral image
|
||||
CV_EXPORTS void integral( const Mat& src, Mat& sum, int sdepth=-1 );
|
||||
CV_EXPORTS void integral( const Mat& src, CV_OUT Mat& sum, int sdepth=-1 );
|
||||
//! computes the integral image and integral for the squared image
|
||||
CV_EXPORTS void integral( const Mat& src, Mat& sum, Mat& sqsum, int sdepth=-1 );
|
||||
CV_EXPORTS void integral( const Mat& src, CV_OUT Mat& sum, CV_OUT Mat& sqsum, int sdepth=-1 );
|
||||
//! computes the integral image, integral for the squared image and the tilted integral image
|
||||
CV_EXPORTS void integral( const Mat& src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth=-1 );
|
||||
CV_EXPORTS void integral( const Mat& src, CV_OUT Mat& sum, CV_OUT Mat& sqsum, CV_OUT Mat& tilted, int sdepth=-1 );
|
||||
|
||||
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
|
||||
CV_EXPORTS void accumulate( const Mat& src, Mat& dst, const Mat& mask=Mat() );
|
||||
CV_EXPORTS void accumulate( const Mat& src, CV_OUT Mat& dst, const Mat& mask=Mat() );
|
||||
//! adds squared src image to the accumulator (dst += src*src).
|
||||
CV_EXPORTS void accumulateSquare( const Mat& src, Mat& dst, const Mat& mask=Mat() );
|
||||
CV_EXPORTS void accumulateSquare( const Mat& src, CV_OUT Mat& dst, const Mat& mask=Mat() );
|
||||
//! adds product of the 2 images to the accumulator (dst += src1*src2).
|
||||
CV_EXPORTS void accumulateProduct( const Mat& src1, const Mat& src2,
|
||||
Mat& dst, const Mat& mask=Mat() );
|
||||
CV_OUT Mat& dst, const Mat& mask=Mat() );
|
||||
//! updates the running average (dst = dst*(1-alpha) + src*alpha)
|
||||
CV_EXPORTS void accumulateWeighted( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void accumulateWeighted( const Mat& src, CV_OUT Mat& dst,
|
||||
double alpha, const Mat& mask=Mat() );
|
||||
|
||||
//! type of the threshold operation
|
||||
@@ -577,30 +580,30 @@ enum { THRESH_BINARY=0, THRESH_BINARY_INV=1, THRESH_TRUNC=2, THRESH_TOZERO=3,
|
||||
THRESH_TOZERO_INV=4, THRESH_MASK=7, THRESH_OTSU=8 };
|
||||
|
||||
//! applies fixed threshold to the image
|
||||
CV_EXPORTS double threshold( const Mat& src, Mat& dst, double thresh, double maxval, int type );
|
||||
CV_EXPORTS double threshold( const Mat& src, CV_OUT Mat& dst, double thresh, double maxval, int type );
|
||||
|
||||
//! adaptive threshold algorithm
|
||||
enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };
|
||||
|
||||
//! applies variable (adaptive) threshold to the image
|
||||
CV_EXPORTS void adaptiveThreshold( const Mat& src, Mat& dst, double maxValue,
|
||||
CV_EXPORTS void adaptiveThreshold( const Mat& src, CV_OUT Mat& dst, double maxValue,
|
||||
int adaptiveMethod, int thresholdType,
|
||||
int blockSize, double C );
|
||||
|
||||
//! smooths and downsamples the image
|
||||
CV_EXPORTS void pyrDown( const Mat& src, Mat& dst, const Size& dstsize=Size());
|
||||
CV_EXPORTS void pyrDown( const Mat& src, CV_OUT Mat& dst, const Size& dstsize=Size());
|
||||
//! upsamples and smoothes the image
|
||||
CV_EXPORTS void pyrUp( const Mat& src, Mat& dst, const Size& dstsize=Size());
|
||||
CV_EXPORTS void pyrUp( const Mat& src, CV_OUT Mat& dst, const Size& dstsize=Size());
|
||||
//! builds the gaussian pyramid using pyrDown() as a basic operation
|
||||
CV_EXPORTS void buildPyramid( const Mat& src, vector<Mat>& dst, int maxlevel );
|
||||
CV_EXPORTS void buildPyramid( const Mat& src, CV_OUT vector<Mat>& dst, int maxlevel );
|
||||
|
||||
//! corrects lens distortion for the given camera matrix and distortion coefficients
|
||||
CV_EXPORTS void undistort( const Mat& src, Mat& dst, const Mat& cameraMatrix,
|
||||
CV_EXPORTS void undistort( const Mat& src, CV_OUT Mat& dst, const Mat& cameraMatrix,
|
||||
const Mat& distCoeffs, const Mat& newCameraMatrix=Mat() );
|
||||
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
|
||||
CV_EXPORTS void initUndistortRectifyMap( const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
const Mat& R, const Mat& newCameraMatrix,
|
||||
Size size, int m1type, Mat& map1, Mat& map2 );
|
||||
Size size, int m1type, CV_OUT Mat& map1, CV_OUT Mat& map2 );
|
||||
|
||||
enum
|
||||
{
|
||||
@@ -611,63 +614,65 @@ enum
|
||||
//! initializes maps for cv::remap() for wide-angle
|
||||
CV_EXPORTS float initWideAngleProjMap( const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
Size imageSize, int destImageWidth,
|
||||
int m1type, Mat& map1, Mat& map2,
|
||||
int m1type, CV_OUT Mat& map1, CV_OUT Mat& map2,
|
||||
int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);
|
||||
|
||||
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
|
||||
CV_EXPORTS Mat getDefaultNewCameraMatrix( const Mat& cameraMatrix, Size imgsize=Size(),
|
||||
bool centerPrincipalPoint=false );
|
||||
//! returns points' coordinates after lens distortion correction
|
||||
CV_EXPORTS void undistortPoints( const Mat& src, vector<Point2f>& dst,
|
||||
CV_EXPORTS void undistortPoints( const Mat& src, CV_OUT vector<Point2f>& dst,
|
||||
const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
const Mat& R=Mat(), const Mat& P=Mat());
|
||||
//! returns points' coordinates after lens distortion correction
|
||||
CV_EXPORTS void undistortPoints( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void undistortPoints( const Mat& src, CV_OUT Mat& dst,
|
||||
const Mat& cameraMatrix, const Mat& distCoeffs,
|
||||
const Mat& R=Mat(), const Mat& P=Mat());
|
||||
|
||||
template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
|
||||
|
||||
//! computes the joint dense histogram for a set of images.
|
||||
CV_EXPORTS void calcHist( const Mat* images, int nimages,
|
||||
const int* channels, const Mat& mask,
|
||||
MatND& hist, int dims, const int* histSize,
|
||||
const float** ranges, bool uniform=true,
|
||||
bool accumulate=false );
|
||||
CV_EXPORTS void calcHist( CV_CARRAY(nimages) const Mat* images, int nimages,
|
||||
CV_CARRAY(dims) const int* channels, const Mat& mask,
|
||||
CV_OUT Mat& hist, int dims, CV_CARRAY(dims) const int* histSize,
|
||||
CV_CUSTOM_CARRAY((dims,histSize,uniform)) const float** ranges,
|
||||
bool uniform=true, bool accumulate=false );
|
||||
|
||||
//! computes the joint sparse histogram for a set of images.
|
||||
CV_EXPORTS void calcHist( const Mat* images, int nimages,
|
||||
const int* channels, const Mat& mask,
|
||||
SparseMat& hist, int dims, const int* histSize,
|
||||
const float** ranges, bool uniform=true,
|
||||
bool accumulate=false );
|
||||
CV_EXPORTS void calcHist( CV_CARRAY(nimages) const Mat* images, int nimages,
|
||||
CV_CARRAY(dims) const int* channels, const Mat& mask,
|
||||
CV_OUT SparseMat& hist, int dims, CV_CARRAY(dims) const int* histSize,
|
||||
CV_CUSTOM_CARRAY((dims,histSize,uniform)) const float** ranges,
|
||||
bool uniform=true, bool accumulate=false );
|
||||
|
||||
//! computes back projection for the set of images
|
||||
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
|
||||
const int* channels, const MatND& hist,
|
||||
Mat& backProject, const float** ranges,
|
||||
CV_EXPORTS void calcBackProject( CV_CARRAY(nimages) const Mat* images, int nimages,
|
||||
CV_CARRAY(hist.dims) const int* channels, const Mat& hist,
|
||||
CV_OUT Mat& backProject,
|
||||
CV_CUSTOM_CARRAY(hist) const float** ranges,
|
||||
double scale=1, bool uniform=true );
|
||||
|
||||
//! computes back projection for the set of images
|
||||
CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
|
||||
const int* channels, const SparseMat& hist,
|
||||
Mat& backProject, const float** ranges,
|
||||
CV_EXPORTS void calcBackProject( CV_CARRAY(nimages) const Mat* images, int nimages,
|
||||
CV_CARRAY(hist.dims()) const int* channels,
|
||||
const SparseMat& hist, CV_OUT Mat& backProject,
|
||||
CV_CUSTOM_CARRAY(hist) const float** ranges,
|
||||
double scale=1, bool uniform=true );
|
||||
|
||||
//! compares two histograms stored in dense arrays
|
||||
CV_EXPORTS double compareHist( const MatND& H1, const MatND& H2, int method );
|
||||
CV_EXPORTS double compareHist( const Mat& H1, const Mat& H2, int method );
|
||||
|
||||
//! compares two histograms stored in sparse arrays
|
||||
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
|
||||
|
||||
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
|
||||
CV_EXPORTS void equalizeHist( const Mat& src, Mat& dst );
|
||||
CV_EXPORTS void equalizeHist( const Mat& src, CV_OUT Mat& dst );
|
||||
|
||||
//! segments the image using watershed algorithm
|
||||
CV_EXPORTS void watershed( const Mat& image, Mat& markers );
|
||||
|
||||
//! filters image using meanshift algorithm
|
||||
CV_EXPORTS void pyrMeanShiftFiltering( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void pyrMeanShiftFiltering( const Mat& src, CV_OUT Mat& dst,
|
||||
double sp, double sr, int maxLevel=1,
|
||||
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
|
||||
|
||||
@@ -698,14 +703,14 @@ enum
|
||||
|
||||
//! restores the damaged image areas using one of the available intpainting algorithms
|
||||
CV_EXPORTS void inpaint( const Mat& src, const Mat& inpaintMask,
|
||||
Mat& dst, double inpaintRange, int flags );
|
||||
CV_OUT Mat& dst, double inpaintRange, int flags );
|
||||
|
||||
//! builds the discrete Voronoi diagram
|
||||
CV_EXPORTS void distanceTransform( const Mat& src, Mat& dst, Mat& labels,
|
||||
CV_EXPORTS void distanceTransform( const Mat& src, CV_OUT Mat& dst, Mat& labels,
|
||||
int distanceType, int maskSize );
|
||||
|
||||
//! computes the distance transform map
|
||||
CV_EXPORTS void distanceTransform( const Mat& src, Mat& dst,
|
||||
CV_EXPORTS void distanceTransform( const Mat& src, CV_OUT Mat& dst,
|
||||
int distanceType, int maskSize );
|
||||
|
||||
enum { FLOODFILL_FIXED_RANGE = 1 << 16,
|
||||
@@ -724,7 +729,7 @@ CV_EXPORTS int floodFill( Mat& image, Mat& mask,
|
||||
int flags=4 );
|
||||
|
||||
//! converts image from one color space to another
|
||||
CV_EXPORTS void cvtColor( const Mat& src, Mat& dst, int code, int dstCn=0 );
|
||||
CV_EXPORTS void cvtColor( const Mat& src, CV_OUT Mat& dst, int code, int dstCn=0 );
|
||||
|
||||
//! raster image moments
|
||||
class CV_EXPORTS Moments
|
||||
@@ -758,7 +763,7 @@ CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
|
||||
enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };
|
||||
|
||||
//! computes the proximity map for the raster template and the image where the template is searched for
|
||||
CV_EXPORTS void matchTemplate( const Mat& image, const Mat& templ, Mat& result, int method );
|
||||
CV_EXPORTS void matchTemplate( const Mat& image, const Mat& templ, CV_OUT Mat& result, int method );
|
||||
|
||||
//! mode of the contour retrieval algorithm
|
||||
enum
|
||||
@@ -779,12 +784,12 @@ enum
|
||||
};
|
||||
|
||||
//! retrieves contours and the hierarchical information from black-n-white image.
|
||||
CV_EXPORTS void findContours( Mat& image, vector<vector<Point> >& contours,
|
||||
CV_EXPORTS void findContours( Mat& image, CV_OUT vector<vector<Point> >& contours,
|
||||
vector<Vec4i>& hierarchy, int mode,
|
||||
int method, Point offset=Point());
|
||||
|
||||
//! retrieves contours from black-n-white image.
|
||||
CV_EXPORTS void findContours( Mat& image, vector<vector<Point> >& contours,
|
||||
CV_EXPORTS void findContours( Mat& image, CV_OUT vector<vector<Point> >& contours,
|
||||
int mode, int method, Point offset=Point());
|
||||
|
||||
//! draws contours in the image
|
||||
@@ -796,11 +801,11 @@ CV_EXPORTS void drawContours( Mat& image, const vector<vector<Point> >& contours
|
||||
|
||||
//! approximates contour or a curve using Douglas-Peucker algorithm
|
||||
CV_EXPORTS void approxPolyDP( const Mat& curve,
|
||||
vector<Point>& approxCurve,
|
||||
CV_OUT vector<Point>& approxCurve,
|
||||
double epsilon, bool closed );
|
||||
//! approximates contour or a curve using Douglas-Peucker algorithm
|
||||
CV_EXPORTS void approxPolyDP( const Mat& curve,
|
||||
vector<Point2f>& approxCurve,
|
||||
CV_OUT vector<Point2f>& approxCurve,
|
||||
double epsilon, bool closed );
|
||||
//! computes the contour perimeter (closed=true) or a curve length
|
||||
CV_EXPORTS double arcLength( const Mat& curve, bool closed );
|
||||
@@ -818,11 +823,11 @@ CV_EXPORTS double matchShapes( const Mat& contour1,
|
||||
const Mat& contour2,
|
||||
int method, double parameter );
|
||||
//! computes convex hull for a set of 2D points.
|
||||
CV_EXPORTS void convexHull( const Mat& points, vector<int>& hull, bool clockwise=false );
|
||||
CV_EXPORTS void convexHull( const Mat& points, CV_OUT vector<int>& hull, bool clockwise=false );
|
||||
//! computes convex hull for a set of 2D points.
|
||||
CV_EXPORTS void convexHull( const Mat& points, vector<Point>& hull, bool clockwise=false );
|
||||
CV_EXPORTS void convexHull( const Mat& points, CV_OUT vector<Point>& hull, bool clockwise=false );
|
||||
//! computes convex hull for a set of 2D points.
|
||||
CV_EXPORTS void convexHull( const Mat& points, vector<Point2f>& hull, bool clockwise=false );
|
||||
CV_EXPORTS void convexHull( const Mat& points, CV_OUT vector<Point2f>& hull, bool clockwise=false );
|
||||
|
||||
//! returns true iff the contour is convex. Does not support contours with self-intersection
|
||||
CV_EXPORTS bool isContourConvex( const Mat& contour );
|
||||
@@ -831,10 +836,10 @@ CV_EXPORTS bool isContourConvex( const Mat& contour );
|
||||
CV_EXPORTS RotatedRect fitEllipse( const Mat& points );
|
||||
|
||||
//! fits line to the set of 2D points using M-estimator algorithm
|
||||
CV_EXPORTS void fitLine( const Mat& points, Vec4f& line, int distType,
|
||||
CV_EXPORTS void fitLine( const Mat& points, CV_OUT Vec4f& line, int distType,
|
||||
double param, double reps, double aeps );
|
||||
//! fits line to the set of 3D points using M-estimator algorithm
|
||||
CV_EXPORTS void fitLine( const Mat& points, Vec6f& line, int distType,
|
||||
CV_EXPORTS void fitLine( const Mat& points, CV_OUT Vec6f& line, int distType,
|
||||
double param, double reps, double aeps );
|
||||
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
|
||||
CV_EXPORTS double pointPolygonTest( const Mat& contour,
|
||||
@@ -845,7 +850,7 @@ CV_EXPORTS Mat estimateRigidTransform( const Mat& A, const Mat& B,
|
||||
bool fullAffine );
|
||||
|
||||
//! computes the best-fit affine transformation that maps one 3D point set to another (RANSAC algorithm is used)
|
||||
CV_EXPORTS int estimateAffine3D(const Mat& from, const Mat& to, Mat& out,
|
||||
CV_EXPORTS int estimateAffine3D(const Mat& from, const Mat& to, CV_OUT Mat& dst,
|
||||
vector<uchar>& outliers,
|
||||
double param1 = 3.0, double param2 = 0.99);
|
||||
|
||||
|
Reference in New Issue
Block a user