First version of CascadeClassifier_GPU.
Only for VS2008 now. Sample for it. new NPP_staging for VS2008 only
This commit is contained in:
362
modules/gpu/src/nvidia/FaceDetectionFeed.cpp_NvidiaAPI_sample
Normal file
362
modules/gpu/src/nvidia/FaceDetectionFeed.cpp_NvidiaAPI_sample
Normal file
@@ -0,0 +1,362 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <cstdio>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#define CV_NO_BACKWARD_COMPATIBILITY
|
||||
|
||||
#include "opencv2/opencv.hpp"
|
||||
|
||||
#include "NCVHaarObjectDetection.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
const Size preferredVideoFrameSize(640, 480);
|
||||
|
||||
string preferredClassifier = "haarcascade_frontalface_alt.xml";
|
||||
string wndTitle = "NVIDIA Computer Vision SDK :: Face Detection in Video Feed";
|
||||
|
||||
|
||||
void printSyntax(void)
|
||||
{
|
||||
printf("Syntax: FaceDetectionFeed.exe [-c cameranum | -v filename] classifier.xml\n");
|
||||
}
|
||||
|
||||
|
||||
void imagePrintf(Mat& img, int lineOffsY, Scalar color, const char *format, ...)
|
||||
{
|
||||
int fontFace = CV_FONT_HERSHEY_PLAIN;
|
||||
double fontScale = 1;
|
||||
|
||||
int baseline;
|
||||
Size textSize = cv::getTextSize("T", fontFace, fontScale, 1, &baseline);
|
||||
|
||||
va_list arg_ptr;
|
||||
va_start(arg_ptr, format);
|
||||
int len = _vscprintf(format, arg_ptr) + 1;
|
||||
|
||||
vector<char> strBuf(len);
|
||||
vsprintf_s(&strBuf[0], len, format, arg_ptr);
|
||||
|
||||
Point org(1, 3 * textSize.height * (lineOffsY + 1) / 2);
|
||||
putText(img, &strBuf[0], org, fontFace, fontScale, color);
|
||||
va_end(arg_ptr);
|
||||
}
|
||||
|
||||
|
||||
NCVStatus process(Mat *srcdst,
|
||||
Ncv32u width, Ncv32u height,
|
||||
NcvBool bShowAllHypotheses, NcvBool bLargestFace,
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
NCVVector<HaarStage64> &d_haarStages, NCVVector<HaarClassifierNode128> &d_haarNodes,
|
||||
NCVVector<HaarFeature64> &d_haarFeatures, NCVVector<HaarStage64> &h_haarStages,
|
||||
INCVMemAllocator &gpuAllocator,
|
||||
INCVMemAllocator &cpuAllocator,
|
||||
cudaDeviceProp &devProp)
|
||||
{
|
||||
ncvAssertReturn(!((srcdst == NULL) ^ gpuAllocator.isCounting()), NCV_NULL_PTR);
|
||||
|
||||
NCVStatus ncvStat;
|
||||
|
||||
NCV_SET_SKIP_COND(gpuAllocator.isCounting());
|
||||
|
||||
NCVMatrixAlloc<Ncv8u> d_src(gpuAllocator, width, height);
|
||||
ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
NCVMatrixAlloc<Ncv8u> h_src(cpuAllocator, width, height);
|
||||
ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
NCVVectorAlloc<NcvRect32u> d_rects(gpuAllocator, 100);
|
||||
ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
Mat h_src_hdr(Size(width, height), CV_8U, h_src.ptr(), h_src.stride());
|
||||
|
||||
NCV_SKIP_COND_BEGIN
|
||||
|
||||
(*srcdst).copyTo(h_src_hdr);
|
||||
|
||||
ncvStat = h_src.copySolid(d_src, 0);
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
NCV_SKIP_COND_END
|
||||
|
||||
NcvSize32u roi;
|
||||
roi.width = d_src.width();
|
||||
roi.height = d_src.height();
|
||||
|
||||
Ncv32u numDetections;
|
||||
ncvStat = ncvDetectObjectsMultiScale_device(
|
||||
d_src, roi, d_rects, numDetections, haar, h_haarStages,
|
||||
d_haarStages, d_haarNodes, d_haarFeatures,
|
||||
haar.ClassifierSize,
|
||||
bShowAllHypotheses ? 0 : 4,
|
||||
1.2f, 1,
|
||||
(bLargestFace ? NCVPipeObjDet_FindLargestObject : 0) | NCVPipeObjDet_VisualizeInPlace,
|
||||
gpuAllocator, cpuAllocator, devProp.major, devProp.minor, 0);
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
NCV_SKIP_COND_BEGIN
|
||||
|
||||
ncvStat = d_src.copySolid(h_src, 0);
|
||||
ncvAssertReturnNcvStat(ncvStat);
|
||||
ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
|
||||
|
||||
h_src_hdr.copyTo(*srcdst);
|
||||
|
||||
NCV_SKIP_COND_END
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
|
||||
printf("NVIDIA Computer Vision SDK\n");
|
||||
printf("Face Detection in video and live feed\n");
|
||||
printf("=========================================\n");
|
||||
printf(" Esc - Quit\n");
|
||||
printf(" Space - Switch between NCV and OpenCV\n");
|
||||
printf(" L - Switch between FullSearch and LargestFace modes\n");
|
||||
printf(" U - Toggle unfiltered hypotheses visualization in FullSearch\n");
|
||||
|
||||
if (argc != 4 && argc != 1)
|
||||
return printSyntax(), -1;
|
||||
|
||||
VideoCapture capture;
|
||||
Size frameSize;
|
||||
|
||||
if (argc == 1 || strcmp(argv[1], "-c") == 0)
|
||||
{
|
||||
// Camera input is specified
|
||||
int camIdx = (argc == 3) ? atoi(argv[2]) : 0;
|
||||
if(!capture.open(camIdx))
|
||||
return printf("Error opening camera\n"), -1;
|
||||
|
||||
capture.set(CV_CAP_PROP_FRAME_WIDTH, preferredVideoFrameSize.width);
|
||||
capture.set(CV_CAP_PROP_FRAME_HEIGHT, preferredVideoFrameSize.height);
|
||||
capture.set(CV_CAP_PROP_FPS, 25);
|
||||
frameSize = preferredVideoFrameSize;
|
||||
}
|
||||
else if (strcmp(argv[1], "-v") == 0)
|
||||
{
|
||||
// Video file input (avi)
|
||||
if(!capture.open(argv[2]))
|
||||
return printf("Error opening video file\n"), -1;
|
||||
|
||||
frameSize.width = (int)capture.get(CV_CAP_PROP_FRAME_WIDTH);
|
||||
frameSize.height = (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT);
|
||||
}
|
||||
else
|
||||
return printSyntax(), -1;
|
||||
|
||||
NcvBool bUseOpenCV = true;
|
||||
NcvBool bLargestFace = true;
|
||||
NcvBool bShowAllHypotheses = false;
|
||||
|
||||
string classifierFile = (argc == 1) ? preferredClassifier : argv[3];
|
||||
|
||||
CascadeClassifier classifierOpenCV;
|
||||
if (!classifierOpenCV.load(classifierFile))
|
||||
return printf("Error (in OpenCV) opening classifier\n"), printSyntax(), -1;
|
||||
|
||||
int devId;
|
||||
ncvAssertCUDAReturn(cudaGetDevice(&devId), -1);
|
||||
cudaDeviceProp devProp;
|
||||
ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), -1);
|
||||
printf("Using GPU %d %s, arch=%d.%d\n", devId, devProp.name, devProp.major, devProp.minor);
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Load the classifier from file (assuming its size is about 1 mb)
|
||||
// using a simple allocator
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
NCVMemNativeAllocator gpuCascadeAllocator(NCVMemoryTypeDevice);
|
||||
ncvAssertPrintReturn(gpuCascadeAllocator.isInitialized(), "Error creating cascade GPU allocator", -1);
|
||||
NCVMemNativeAllocator cpuCascadeAllocator(NCVMemoryTypeHostPinned);
|
||||
ncvAssertPrintReturn(cpuCascadeAllocator.isInitialized(), "Error creating cascade CPU allocator", -1);
|
||||
|
||||
Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
|
||||
ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", -1);
|
||||
|
||||
NCVVectorAlloc<HaarStage64> h_haarStages(cpuCascadeAllocator, haarNumStages);
|
||||
ncvAssertPrintReturn(h_haarStages.isMemAllocated(), "Error in cascade CPU allocator", -1);
|
||||
NCVVectorAlloc<HaarClassifierNode128> h_haarNodes(cpuCascadeAllocator, haarNumNodes);
|
||||
ncvAssertPrintReturn(h_haarNodes.isMemAllocated(), "Error in cascade CPU allocator", -1);
|
||||
NCVVectorAlloc<HaarFeature64> h_haarFeatures(cpuCascadeAllocator, haarNumFeatures);
|
||||
ncvAssertPrintReturn(h_haarFeatures.isMemAllocated(), "Error in cascade CPU allocator", -1);
|
||||
|
||||
HaarClassifierCascadeDescriptor haar;
|
||||
ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, h_haarStages, h_haarNodes, h_haarFeatures);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", -1);
|
||||
|
||||
NCVVectorAlloc<HaarStage64> d_haarStages(gpuCascadeAllocator, haarNumStages);
|
||||
ncvAssertPrintReturn(d_haarStages.isMemAllocated(), "Error in cascade GPU allocator", -1);
|
||||
NCVVectorAlloc<HaarClassifierNode128> d_haarNodes(gpuCascadeAllocator, haarNumNodes);
|
||||
ncvAssertPrintReturn(d_haarNodes.isMemAllocated(), "Error in cascade GPU allocator", -1);
|
||||
NCVVectorAlloc<HaarFeature64> d_haarFeatures(gpuCascadeAllocator, haarNumFeatures);
|
||||
ncvAssertPrintReturn(d_haarFeatures.isMemAllocated(), "Error in cascade GPU allocator", -1);
|
||||
|
||||
ncvStat = h_haarStages.copySolid(d_haarStages, 0);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
|
||||
ncvStat = h_haarNodes.copySolid(d_haarNodes, 0);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
|
||||
ncvStat = h_haarFeatures.copySolid(d_haarFeatures, 0);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", -1);
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Calculate memory requirements and create real allocators
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
|
||||
ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", -1);
|
||||
NCVMemStackAllocator cpuCounter(devProp.textureAlignment);
|
||||
ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", -1);
|
||||
|
||||
ncvStat = process(NULL, frameSize.width, frameSize.height,
|
||||
false, false, haar,
|
||||
d_haarStages, d_haarNodes,
|
||||
d_haarFeatures, h_haarStages,
|
||||
gpuCounter, cpuCounter, devProp);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
|
||||
|
||||
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
|
||||
ncvAssertPrintReturn(gpuAllocator.isInitialized(), "Error creating GPU memory allocator", -1);
|
||||
NCVMemStackAllocator cpuAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);
|
||||
ncvAssertPrintReturn(cpuAllocator.isInitialized(), "Error creating CPU memory allocator", -1);
|
||||
|
||||
printf("Initialized for frame size [%dx%d]\n", frameSize.width, frameSize.height);
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Main processing loop
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
namedWindow(wndTitle, 1);
|
||||
|
||||
Mat frame, gray, frameDisp;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
// For camera and video file, capture the next image
|
||||
capture >> frame;
|
||||
if (frame.empty())
|
||||
break;
|
||||
|
||||
cvtColor(frame, gray, CV_BGR2GRAY);
|
||||
|
||||
// process
|
||||
NcvSize32u minSize = haar.ClassifierSize;
|
||||
if (bLargestFace)
|
||||
{
|
||||
Ncv32u ratioX = preferredVideoFrameSize.width / minSize.width;
|
||||
Ncv32u ratioY = preferredVideoFrameSize.height / minSize.height;
|
||||
Ncv32u ratioSmallest = std::min(ratioX, ratioY);
|
||||
ratioSmallest = (Ncv32u)std::max(ratioSmallest / 2.5f, 1.f);
|
||||
minSize.width *= ratioSmallest;
|
||||
minSize.height *= ratioSmallest;
|
||||
}
|
||||
|
||||
NcvTimer timer = ncvStartTimer();
|
||||
|
||||
if (!bUseOpenCV)
|
||||
{
|
||||
ncvStat = process(&gray, frameSize.width, frameSize.height,
|
||||
bShowAllHypotheses, bLargestFace, haar,
|
||||
d_haarStages, d_haarNodes,
|
||||
d_haarFeatures, h_haarStages,
|
||||
gpuAllocator, cpuAllocator, devProp);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error in memory counting pass", -1);
|
||||
}
|
||||
else
|
||||
{
|
||||
vector<Rect> rectsOpenCV;
|
||||
|
||||
classifierOpenCV.detectMultiScale(
|
||||
gray,
|
||||
rectsOpenCV,
|
||||
1.2f,
|
||||
bShowAllHypotheses && !bLargestFace ? 0 : 4,
|
||||
(bLargestFace ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE,
|
||||
Size(minSize.width, minSize.height));
|
||||
|
||||
for (size_t rt = 0; rt < rectsOpenCV.size(); ++rt)
|
||||
rectangle(gray, rectsOpenCV[rt], Scalar(255));
|
||||
}
|
||||
|
||||
Ncv32f avgTime = (Ncv32f)ncvEndQueryTimerMs(timer);
|
||||
|
||||
cvtColor(gray, frameDisp, CV_GRAY2BGR);
|
||||
|
||||
imagePrintf(frameDisp, 0, CV_RGB(255, 0,0), "Space - Switch NCV%s / OpenCV%s", bUseOpenCV?"":" (ON)", bUseOpenCV?" (ON)":"");
|
||||
imagePrintf(frameDisp, 1, CV_RGB(255, 0,0), "L - Switch FullSearch%s / LargestFace%s modes", bLargestFace?"":" (ON)", bLargestFace?" (ON)":"");
|
||||
imagePrintf(frameDisp, 2, CV_RGB(255, 0,0), "U - Toggle unfiltered hypotheses visualization in FullSearch %s", bShowAllHypotheses?"(ON)":"(OFF)");
|
||||
imagePrintf(frameDisp, 3, CV_RGB(118,185,0), " Running at %f FPS on %s", 1000.0f / avgTime, bUseOpenCV?"CPU":"GPU");
|
||||
|
||||
cv::imshow(wndTitle, frameDisp);
|
||||
|
||||
switch (cvWaitKey(1))
|
||||
{
|
||||
case ' ':
|
||||
bUseOpenCV = !bUseOpenCV;
|
||||
break;
|
||||
case 'L':case 'l':
|
||||
bLargestFace = !bLargestFace;
|
||||
break;
|
||||
case 'U':case 'u':
|
||||
bShowAllHypotheses = !bShowAllHypotheses;
|
||||
break;
|
||||
case 27:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
571
modules/gpu/src/nvidia/NCV.cpp
Normal file
571
modules/gpu/src/nvidia/NCV.cpp
Normal file
@@ -0,0 +1,571 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
|
||||
#include <precomp.hpp>
|
||||
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
|
||||
#include <stdarg.h>
|
||||
#include "NCV.hpp"
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Error handling helpers
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
static void stdioDebugOutput(const char *msg)
|
||||
{
|
||||
printf("%s", msg);
|
||||
}
|
||||
|
||||
|
||||
static NCVDebugOutputHandler *debugOutputHandler = stdioDebugOutput;
|
||||
|
||||
|
||||
void ncvDebugOutput(const char *msg, ...)
|
||||
{
|
||||
const int K_DEBUG_STRING_MAXLEN = 1024;
|
||||
char buffer[K_DEBUG_STRING_MAXLEN];
|
||||
va_list args;
|
||||
va_start(args, msg);
|
||||
vsnprintf_s(buffer, K_DEBUG_STRING_MAXLEN, K_DEBUG_STRING_MAXLEN-1, msg, args);
|
||||
va_end (args);
|
||||
debugOutputHandler(buffer);
|
||||
}
|
||||
|
||||
|
||||
void ncvSetDebugOutputHandler(NCVDebugOutputHandler *func)
|
||||
{
|
||||
debugOutputHandler = func;
|
||||
}
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Memory wrappers and helpers
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
NCVStatus GPUAlignmentValue(Ncv32u &alignment)
|
||||
{
|
||||
int curDev;
|
||||
cudaDeviceProp curProp;
|
||||
ncvAssertCUDAReturn(cudaGetDevice(&curDev), NCV_CUDA_ERROR);
|
||||
ncvAssertCUDAReturn(cudaGetDeviceProperties(&curProp, curDev), NCV_CUDA_ERROR);
|
||||
alignment = curProp.textureAlignment; //GPUAlignmentValue(curProp.major);
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
Ncv32u alignUp(Ncv32u what, Ncv32u alignment)
|
||||
{
|
||||
Ncv32u alignMask = alignment-1;
|
||||
Ncv32u inverseAlignMask = ~alignMask;
|
||||
Ncv32u res = (what + alignMask) & inverseAlignMask;
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
void NCVMemPtr::clear()
|
||||
{
|
||||
ptr = NULL;
|
||||
memtype = NCVMemoryTypeNone;
|
||||
}
|
||||
|
||||
|
||||
void NCVMemSegment::clear()
|
||||
{
|
||||
begin.clear();
|
||||
size = 0;
|
||||
}
|
||||
|
||||
|
||||
NCVStatus memSegCopyHelper(void *dst, NCVMemoryType dstType, const void *src, NCVMemoryType srcType, size_t sz, cudaStream_t cuStream)
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
switch (dstType)
|
||||
{
|
||||
case NCVMemoryTypeHostPageable:
|
||||
case NCVMemoryTypeHostPinned:
|
||||
switch (srcType)
|
||||
{
|
||||
case NCVMemoryTypeHostPageable:
|
||||
case NCVMemoryTypeHostPinned:
|
||||
memcpy(dst, src, sz);
|
||||
ncvStat = NCV_SUCCESS;
|
||||
break;
|
||||
case NCVMemoryTypeDevice:
|
||||
if (cuStream != 0)
|
||||
{
|
||||
ncvAssertCUDAReturn(cudaMemcpyAsync(dst, src, sz, cudaMemcpyDeviceToHost, cuStream), NCV_CUDA_ERROR);
|
||||
}
|
||||
else
|
||||
{
|
||||
ncvAssertCUDAReturn(cudaMemcpy(dst, src, sz, cudaMemcpyDeviceToHost), NCV_CUDA_ERROR);
|
||||
}
|
||||
ncvStat = NCV_SUCCESS;
|
||||
break;
|
||||
default:
|
||||
ncvStat = NCV_MEM_RESIDENCE_ERROR;
|
||||
}
|
||||
break;
|
||||
case NCVMemoryTypeDevice:
|
||||
switch (srcType)
|
||||
{
|
||||
case NCVMemoryTypeHostPageable:
|
||||
case NCVMemoryTypeHostPinned:
|
||||
if (cuStream != 0)
|
||||
{
|
||||
ncvAssertCUDAReturn(cudaMemcpyAsync(dst, src, sz, cudaMemcpyHostToDevice, cuStream), NCV_CUDA_ERROR);
|
||||
}
|
||||
else
|
||||
{
|
||||
ncvAssertCUDAReturn(cudaMemcpy(dst, src, sz, cudaMemcpyHostToDevice), NCV_CUDA_ERROR);
|
||||
}
|
||||
ncvStat = NCV_SUCCESS;
|
||||
break;
|
||||
case NCVMemoryTypeDevice:
|
||||
if (cuStream != 0)
|
||||
{
|
||||
ncvAssertCUDAReturn(cudaMemcpyAsync(dst, src, sz, cudaMemcpyDeviceToDevice, cuStream), NCV_CUDA_ERROR);
|
||||
}
|
||||
else
|
||||
{
|
||||
ncvAssertCUDAReturn(cudaMemcpy(dst, src, sz, cudaMemcpyDeviceToDevice), NCV_CUDA_ERROR);
|
||||
}
|
||||
ncvStat = NCV_SUCCESS;
|
||||
break;
|
||||
default:
|
||||
ncvStat = NCV_MEM_RESIDENCE_ERROR;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
ncvStat = NCV_MEM_RESIDENCE_ERROR;
|
||||
}
|
||||
|
||||
return ncvStat;
|
||||
}
|
||||
|
||||
|
||||
//===================================================================
|
||||
//
|
||||
// NCVMemStackAllocator class members implementation
|
||||
//
|
||||
//===================================================================
|
||||
|
||||
|
||||
NCVMemStackAllocator::NCVMemStackAllocator(Ncv32u alignment)
|
||||
:
|
||||
currentSize(0),
|
||||
_maxSize(0),
|
||||
allocBegin(NULL),
|
||||
begin(NULL),
|
||||
_memType(NCVMemoryTypeNone),
|
||||
_alignment(alignment)
|
||||
{
|
||||
NcvBool bProperAlignment = (alignment & (alignment-1)) == 0;
|
||||
ncvAssertPrintCheck(bProperAlignment, "NCVMemStackAllocator ctor:: alignment not power of 2");
|
||||
}
|
||||
|
||||
|
||||
NCVMemStackAllocator::NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment)
|
||||
:
|
||||
currentSize(0),
|
||||
_maxSize(0),
|
||||
allocBegin(NULL),
|
||||
_memType(memT),
|
||||
_alignment(alignment)
|
||||
{
|
||||
NcvBool bProperAlignment = (alignment & (alignment-1)) == 0;
|
||||
ncvAssertPrintCheck(bProperAlignment, "NCVMemStackAllocator ctor:: _alignment not power of 2");
|
||||
|
||||
allocBegin = NULL;
|
||||
|
||||
switch (memT)
|
||||
{
|
||||
case NCVMemoryTypeDevice:
|
||||
ncvAssertCUDAReturn(cudaMalloc(&allocBegin, capacity), );
|
||||
break;
|
||||
case NCVMemoryTypeHostPinned:
|
||||
ncvAssertCUDAReturn(cudaMallocHost(&allocBegin, capacity), );
|
||||
break;
|
||||
case NCVMemoryTypeHostPageable:
|
||||
allocBegin = (Ncv8u *)malloc(capacity);
|
||||
break;
|
||||
}
|
||||
|
||||
if (capacity == 0)
|
||||
{
|
||||
allocBegin = (Ncv8u *)(0x1);
|
||||
}
|
||||
|
||||
if (!isCounting())
|
||||
{
|
||||
begin = allocBegin;
|
||||
end = begin + capacity;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NCVMemStackAllocator::~NCVMemStackAllocator()
|
||||
{
|
||||
if (allocBegin != NULL)
|
||||
{
|
||||
ncvAssertPrintCheck(currentSize == 0, "NCVMemStackAllocator dtor:: not all objects were deallocated properly, forcing destruction");
|
||||
switch (_memType)
|
||||
{
|
||||
case NCVMemoryTypeDevice:
|
||||
ncvAssertCUDAReturn(cudaFree(allocBegin), );
|
||||
break;
|
||||
case NCVMemoryTypeHostPinned:
|
||||
ncvAssertCUDAReturn(cudaFreeHost(allocBegin), );
|
||||
break;
|
||||
case NCVMemoryTypeHostPageable:
|
||||
free(allocBegin);
|
||||
break;
|
||||
}
|
||||
allocBegin = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
NCVStatus NCVMemStackAllocator::alloc(NCVMemSegment &seg, size_t size)
|
||||
{
|
||||
seg.clear();
|
||||
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
size = alignUp(size, this->_alignment);
|
||||
this->currentSize += size;
|
||||
this->_maxSize = std::max(this->_maxSize, this->currentSize);
|
||||
|
||||
if (!isCounting())
|
||||
{
|
||||
size_t availSize = end - begin;
|
||||
ncvAssertReturn(size <= availSize, NCV_ALLOCATOR_INSUFFICIENT_CAPACITY);
|
||||
}
|
||||
|
||||
seg.begin.ptr = begin;
|
||||
seg.begin.memtype = this->_memType;
|
||||
seg.size = size;
|
||||
begin += size;
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
NCVStatus NCVMemStackAllocator::dealloc(NCVMemSegment &seg)
|
||||
{
|
||||
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
ncvAssertReturn(seg.begin.memtype == this->_memType, NCV_ALLOCATOR_BAD_DEALLOC);
|
||||
ncvAssertReturn(seg.begin.ptr != NULL || isCounting(), NCV_ALLOCATOR_BAD_DEALLOC);
|
||||
ncvAssertReturn(seg.begin.ptr == begin - seg.size, NCV_ALLOCATOR_DEALLOC_ORDER);
|
||||
|
||||
currentSize -= seg.size;
|
||||
begin -= seg.size;
|
||||
|
||||
seg.clear();
|
||||
|
||||
ncvAssertReturn(allocBegin <= begin, NCV_ALLOCATOR_BAD_DEALLOC);
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
NcvBool NCVMemStackAllocator::isInitialized(void) const
|
||||
{
|
||||
return ((this->_alignment & (this->_alignment-1)) == 0) && isCounting() || this->allocBegin != NULL;
|
||||
}
|
||||
|
||||
|
||||
NcvBool NCVMemStackAllocator::isCounting(void) const
|
||||
{
|
||||
return this->_memType == NCVMemoryTypeNone;
|
||||
}
|
||||
|
||||
|
||||
NCVMemoryType NCVMemStackAllocator::memType(void) const
|
||||
{
|
||||
return this->_memType;
|
||||
}
|
||||
|
||||
|
||||
Ncv32u NCVMemStackAllocator::alignment(void) const
|
||||
{
|
||||
return this->_alignment;
|
||||
}
|
||||
|
||||
|
||||
size_t NCVMemStackAllocator::maxSize(void) const
|
||||
{
|
||||
return this->_maxSize;
|
||||
}
|
||||
|
||||
|
||||
//===================================================================
|
||||
//
|
||||
// NCVMemNativeAllocator class members implementation
|
||||
//
|
||||
//===================================================================
|
||||
|
||||
|
||||
NCVMemNativeAllocator::NCVMemNativeAllocator(NCVMemoryType memT)
|
||||
:
|
||||
currentSize(0),
|
||||
_maxSize(0),
|
||||
_memType(memT)
|
||||
{
|
||||
ncvAssertPrintReturn(memT != NCVMemoryTypeNone, "NCVMemNativeAllocator ctor:: counting not permitted for this allocator type", );
|
||||
ncvAssertPrintReturn(NCV_SUCCESS == GPUAlignmentValue(this->_alignment), "NCVMemNativeAllocator ctor:: couldn't get device _alignment", );
|
||||
}
|
||||
|
||||
|
||||
NCVMemNativeAllocator::~NCVMemNativeAllocator()
|
||||
{
|
||||
ncvAssertPrintCheck(currentSize == 0, "NCVMemNativeAllocator dtor:: detected memory leak");
|
||||
}
|
||||
|
||||
|
||||
NCVStatus NCVMemNativeAllocator::alloc(NCVMemSegment &seg, size_t size)
|
||||
{
|
||||
seg.clear();
|
||||
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
|
||||
switch (this->_memType)
|
||||
{
|
||||
case NCVMemoryTypeDevice:
|
||||
ncvAssertCUDAReturn(cudaMalloc(&seg.begin.ptr, size), NCV_CUDA_ERROR);
|
||||
break;
|
||||
case NCVMemoryTypeHostPinned:
|
||||
ncvAssertCUDAReturn(cudaMallocHost(&seg.begin.ptr, size), NCV_CUDA_ERROR);
|
||||
break;
|
||||
case NCVMemoryTypeHostPageable:
|
||||
seg.begin.ptr = (Ncv8u *)malloc(size);
|
||||
break;
|
||||
}
|
||||
|
||||
this->currentSize += alignUp(size, this->_alignment);
|
||||
this->_maxSize = std::max(this->_maxSize, this->currentSize);
|
||||
|
||||
seg.begin.memtype = this->_memType;
|
||||
seg.size = size;
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
NCVStatus NCVMemNativeAllocator::dealloc(NCVMemSegment &seg)
|
||||
{
|
||||
ncvAssertReturn(isInitialized(), NCV_ALLOCATOR_BAD_ALLOC);
|
||||
ncvAssertReturn(seg.begin.memtype == this->_memType, NCV_ALLOCATOR_BAD_DEALLOC);
|
||||
ncvAssertReturn(seg.begin.ptr != NULL, NCV_ALLOCATOR_BAD_DEALLOC);
|
||||
|
||||
ncvAssertReturn(currentSize >= alignUp(seg.size, this->_alignment), NCV_ALLOCATOR_BAD_DEALLOC);
|
||||
currentSize -= alignUp(seg.size, this->_alignment);
|
||||
|
||||
switch (this->_memType)
|
||||
{
|
||||
case NCVMemoryTypeDevice:
|
||||
ncvAssertCUDAReturn(cudaFree(seg.begin.ptr), NCV_CUDA_ERROR);
|
||||
break;
|
||||
case NCVMemoryTypeHostPinned:
|
||||
ncvAssertCUDAReturn(cudaFreeHost(seg.begin.ptr), NCV_CUDA_ERROR);
|
||||
break;
|
||||
case NCVMemoryTypeHostPageable:
|
||||
free(seg.begin.ptr);
|
||||
break;
|
||||
}
|
||||
|
||||
seg.clear();
|
||||
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
NcvBool NCVMemNativeAllocator::isInitialized(void) const
|
||||
{
|
||||
return (this->_alignment != 0);
|
||||
}
|
||||
|
||||
|
||||
NcvBool NCVMemNativeAllocator::isCounting(void) const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
NCVMemoryType NCVMemNativeAllocator::memType(void) const
|
||||
{
|
||||
return this->_memType;
|
||||
}
|
||||
|
||||
|
||||
Ncv32u NCVMemNativeAllocator::alignment(void) const
|
||||
{
|
||||
return this->_alignment;
|
||||
}
|
||||
|
||||
|
||||
size_t NCVMemNativeAllocator::maxSize(void) const
|
||||
{
|
||||
return this->_maxSize;
|
||||
}
|
||||
|
||||
|
||||
//===================================================================
|
||||
//
|
||||
// Time and timer routines
|
||||
//
|
||||
//===================================================================
|
||||
|
||||
|
||||
typedef struct _NcvTimeMoment NcvTimeMoment;
|
||||
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
|
||||
#include <Windows.h>
|
||||
|
||||
typedef struct _NcvTimeMoment
|
||||
{
|
||||
LONGLONG moment, freq;
|
||||
} NcvTimeMoment;
|
||||
|
||||
|
||||
static void _ncvQueryMoment(NcvTimeMoment *t)
|
||||
{
|
||||
QueryPerformanceFrequency((LARGE_INTEGER *)&(t->freq));
|
||||
QueryPerformanceCounter((LARGE_INTEGER *)&(t->moment));
|
||||
}
|
||||
|
||||
|
||||
double _ncvMomentToMicroseconds(NcvTimeMoment *t)
|
||||
{
|
||||
return 1000000.0 * t->moment / t->freq;
|
||||
}
|
||||
|
||||
|
||||
double _ncvMomentsDiffToMicroseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
|
||||
{
|
||||
return 1000000.0 * 2 * ((t2->moment) - (t1->moment)) / (t1->freq + t2->freq);
|
||||
}
|
||||
|
||||
|
||||
double _ncvMomentsDiffToMilliseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
|
||||
{
|
||||
return 1000.0 * 2 * ((t2->moment) - (t1->moment)) / (t1->freq + t2->freq);
|
||||
}
|
||||
|
||||
#elif defined(__unix__)
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
typedef struct _NcvTimeMoment
|
||||
{
|
||||
struct timeval tv;
|
||||
struct timezone tz;
|
||||
} NcvTimeMoment;
|
||||
|
||||
|
||||
void _ncvQueryMoment(NcvTimeMoment *t)
|
||||
{
|
||||
gettimeofday(& t->tv, & t->tz);
|
||||
}
|
||||
|
||||
|
||||
double _ncvMomentToMicroseconds(NcvTimeMoment *t)
|
||||
{
|
||||
return 1000000.0 * t->tv.tv_sec + (double)t->tv.tv_usec;
|
||||
}
|
||||
|
||||
|
||||
double _ncvMomentsDiffToMicroseconds(NcvTimeMoment *t1, NcvTimeMoment *t2)
|
||||
{
|
||||
return (((double)t2->tv.tv_sec - (double)t1->tv.tv_sec) * 1000000 + (double)t2->tv.tv_usec - (double)t1->tv.tv_usec);
|
||||
}
|
||||
|
||||
|
||||
#endif //#if defined(_WIN32) || defined(_WIN64)
|
||||
|
||||
|
||||
struct _NcvTimer
|
||||
{
|
||||
NcvTimeMoment t1, t2;
|
||||
};
|
||||
|
||||
|
||||
NcvTimer ncvStartTimer(void)
|
||||
{
|
||||
struct _NcvTimer *t;
|
||||
t = (struct _NcvTimer *)malloc(sizeof(struct _NcvTimer));
|
||||
_ncvQueryMoment(&t->t1);
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
double ncvEndQueryTimerUs(NcvTimer t)
|
||||
{
|
||||
double res;
|
||||
_ncvQueryMoment(&t->t2);
|
||||
res = _ncvMomentsDiffToMicroseconds(&t->t1, &t->t2);
|
||||
free(t);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
double ncvEndQueryTimerMs(NcvTimer t)
|
||||
{
|
||||
double res;
|
||||
_ncvQueryMoment(&t->t2);
|
||||
res = _ncvMomentsDiffToMilliseconds(&t->t1, &t->t2);
|
||||
free(t);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
837
modules/gpu/src/nvidia/NCV.hpp
Normal file
837
modules/gpu/src/nvidia/NCV.hpp
Normal file
@@ -0,0 +1,837 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef _ncv_hpp_
|
||||
#define _ncv_hpp_
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include "npp_staging.h"
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Alignment macros
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
#if !defined(__align__) && !defined(__CUDACC__)
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
#define __align__(n) __declspec(align(n))
|
||||
#elif defined(__unix__)
|
||||
#define __align__(n) __attribute__((__aligned__(n)))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Integral and compound types of guaranteed size
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
typedef bool NcvBool;
|
||||
typedef long long Ncv64s;
|
||||
typedef unsigned long long Ncv64u;
|
||||
typedef int Ncv32s;
|
||||
typedef unsigned int Ncv32u;
|
||||
typedef short Ncv16s;
|
||||
typedef unsigned short Ncv16u;
|
||||
typedef char Ncv8s;
|
||||
typedef unsigned char Ncv8u;
|
||||
typedef float Ncv32f;
|
||||
typedef double Ncv64f;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Ncv8u x;
|
||||
Ncv8u y;
|
||||
Ncv8u width;
|
||||
Ncv8u height;
|
||||
} NcvRect8u;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Ncv32s x; ///< x-coordinate of upper left corner.
|
||||
Ncv32s y; ///< y-coordinate of upper left corner.
|
||||
Ncv32s width; ///< Rectangle width.
|
||||
Ncv32s height; ///< Rectangle height.
|
||||
} NcvRect32s;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Ncv32u x; ///< x-coordinate of upper left corner.
|
||||
Ncv32u y; ///< y-coordinate of upper left corner.
|
||||
Ncv32u width; ///< Rectangle width.
|
||||
Ncv32u height; ///< Rectangle height.
|
||||
} NcvRect32u;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Ncv32s width; ///< Rectangle width.
|
||||
Ncv32s height; ///< Rectangle height.
|
||||
} NcvSize32s;
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Ncv32u width; ///< Rectangle width.
|
||||
Ncv32u height; ///< Rectangle height.
|
||||
} NcvSize32u;
|
||||
|
||||
|
||||
NPPST_CT_ASSERT(sizeof(NcvBool) <= 4);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv64s) == 8);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv64u) == 8);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv32s) == 4);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv32u) == 4);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv16s) == 2);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv16u) == 2);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv8s) == 1);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv8u) == 1);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv32f) == 4);
|
||||
NPPST_CT_ASSERT(sizeof(Ncv64f) == 8);
|
||||
NPPST_CT_ASSERT(sizeof(NcvRect8u) == sizeof(Ncv32u));
|
||||
NPPST_CT_ASSERT(sizeof(NcvRect32s) == 4 * sizeof(Ncv32s));
|
||||
NPPST_CT_ASSERT(sizeof(NcvRect32u) == 4 * sizeof(Ncv32u));
|
||||
NPPST_CT_ASSERT(sizeof(NcvSize32u) == 2 * sizeof(Ncv32u));
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Persistent constants
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
const Ncv32u K_WARP_SIZE = 32;
|
||||
const Ncv32u K_LOG2_WARP_SIZE = 5;
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Error handling
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
#define NCV_CT_PREP_STRINGIZE_AUX(x) #x
|
||||
#define NCV_CT_PREP_STRINGIZE(x) NCV_CT_PREP_STRINGIZE_AUX(x)
|
||||
|
||||
|
||||
void ncvDebugOutput(const char *msg, ...);
|
||||
|
||||
|
||||
typedef void NCVDebugOutputHandler(const char* msg);
|
||||
|
||||
|
||||
void ncvSetDebugOutputHandler(NCVDebugOutputHandler* func);
|
||||
|
||||
|
||||
#define ncvAssertPrintCheck(pred, msg) \
|
||||
((pred) ? true : (ncvDebugOutput("\n%s\n", \
|
||||
"NCV Assertion Failed: " msg ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__) \
|
||||
), false))
|
||||
|
||||
|
||||
#define ncvAssertPrintReturn(pred, msg, err) \
|
||||
if (ncvAssertPrintCheck(pred, msg)) ; else return err
|
||||
|
||||
|
||||
#define ncvAssertReturn(pred, err) \
|
||||
do \
|
||||
{ \
|
||||
if (!(pred)) \
|
||||
{ \
|
||||
ncvDebugOutput("\n%s%d%s\n", "NCV Assertion Failed: retcode=", (int)err, ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__)); \
|
||||
return err; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
||||
#define ncvAssertReturnNcvStat(ncvOp) \
|
||||
do \
|
||||
{ \
|
||||
NCVStatus _ncvStat = ncvOp; \
|
||||
if (NCV_SUCCESS != _ncvStat) \
|
||||
{ \
|
||||
ncvDebugOutput("\n%s%d%s\n", "NCV Assertion Failed: NcvStat=", (int)_ncvStat, ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__)); \
|
||||
return _ncvStat; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
||||
#define ncvAssertCUDAReturn(cudacall, errCode) \
|
||||
do \
|
||||
{ \
|
||||
cudaError_t resCall = cudacall; \
|
||||
cudaError_t resGLE = cudaGetLastError(); \
|
||||
if (cudaSuccess != resCall || cudaSuccess != resGLE) \
|
||||
{ \
|
||||
ncvDebugOutput("\n%s%d%s\n", "NCV CUDA Assertion Failed: cudaError_t=", (int)(resCall | resGLE), ", file=" __FILE__ ", line=" NCV_CT_PREP_STRINGIZE(__LINE__)); \
|
||||
return errCode; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
|
||||
/**
|
||||
* Return-codes for status notification, errors and warnings
|
||||
*/
|
||||
enum NCVStatus
|
||||
{
|
||||
NCV_SUCCESS,
|
||||
|
||||
NCV_CUDA_ERROR,
|
||||
NCV_NPP_ERROR,
|
||||
NCV_FILE_ERROR,
|
||||
|
||||
NCV_NULL_PTR,
|
||||
NCV_INCONSISTENT_INPUT,
|
||||
NCV_TEXTURE_BIND_ERROR,
|
||||
NCV_DIMENSIONS_INVALID,
|
||||
|
||||
NCV_INVALID_ROI,
|
||||
NCV_INVALID_STEP,
|
||||
NCV_INVALID_SCALE,
|
||||
|
||||
NCV_ALLOCATOR_NOT_INITIALIZED,
|
||||
NCV_ALLOCATOR_BAD_ALLOC,
|
||||
NCV_ALLOCATOR_BAD_DEALLOC,
|
||||
NCV_ALLOCATOR_INSUFFICIENT_CAPACITY,
|
||||
NCV_ALLOCATOR_DEALLOC_ORDER,
|
||||
NCV_ALLOCATOR_BAD_REUSE,
|
||||
|
||||
NCV_MEM_COPY_ERROR,
|
||||
NCV_MEM_RESIDENCE_ERROR,
|
||||
NCV_MEM_INSUFFICIENT_CAPACITY,
|
||||
|
||||
NCV_HAAR_INVALID_PIXEL_STEP,
|
||||
NCV_HAAR_TOO_MANY_FEATURES_IN_CLASSIFIER,
|
||||
NCV_HAAR_TOO_MANY_FEATURES_IN_CASCADE,
|
||||
NCV_HAAR_TOO_LARGE_FEATURES,
|
||||
NCV_HAAR_XML_LOADING_EXCEPTION,
|
||||
|
||||
NCV_NOIMPL_HAAR_TILTED_FEATURES,
|
||||
|
||||
NCV_WARNING_HAAR_DETECTIONS_VECTOR_OVERFLOW,
|
||||
};
|
||||
|
||||
|
||||
#define NCV_SET_SKIP_COND(x) \
|
||||
bool __ncv_skip_cond = x
|
||||
|
||||
|
||||
#define NCV_RESET_SKIP_COND(x) \
|
||||
__ncv_skip_cond = x
|
||||
|
||||
|
||||
#define NCV_SKIP_COND_BEGIN \
|
||||
if (!__ncv_skip_cond) {
|
||||
|
||||
|
||||
#define NCV_SKIP_COND_END \
|
||||
}
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Timer
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
typedef struct _NcvTimer *NcvTimer;
|
||||
|
||||
NcvTimer ncvStartTimer(void);
|
||||
|
||||
double ncvEndQueryTimerUs(NcvTimer t);
|
||||
|
||||
double ncvEndQueryTimerMs(NcvTimer t);
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Memory management classes template compound types
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
/**
|
||||
* Alignment of GPU memory chunks in bytes
|
||||
*/
|
||||
NCVStatus GPUAlignmentValue(Ncv32u &alignment);
|
||||
|
||||
|
||||
/**
|
||||
* Calculates the aligned top bound value
|
||||
*/
|
||||
Ncv32u alignUp(Ncv32u what, Ncv32u alignment);
|
||||
|
||||
|
||||
/**
|
||||
* NCVMemoryType
|
||||
*/
|
||||
enum NCVMemoryType
|
||||
{
|
||||
NCVMemoryTypeNone,
|
||||
NCVMemoryTypeHostPageable,
|
||||
NCVMemoryTypeHostPinned,
|
||||
NCVMemoryTypeDevice
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVMemPtr
|
||||
*/
|
||||
struct NCVMemPtr
|
||||
{
|
||||
void *ptr;
|
||||
NCVMemoryType memtype;
|
||||
void clear();
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVMemSegment
|
||||
*/
|
||||
struct NCVMemSegment
|
||||
{
|
||||
NCVMemPtr begin;
|
||||
size_t size;
|
||||
void clear();
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* INCVMemAllocator (Interface)
|
||||
*/
|
||||
class INCVMemAllocator
|
||||
{
|
||||
public:
|
||||
virtual ~INCVMemAllocator() = 0;
|
||||
|
||||
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size) = 0;
|
||||
virtual NCVStatus dealloc(NCVMemSegment &seg) = 0;
|
||||
|
||||
virtual NcvBool isInitialized(void) const = 0;
|
||||
virtual NcvBool isCounting(void) const = 0;
|
||||
|
||||
virtual NCVMemoryType memType(void) const = 0;
|
||||
virtual Ncv32u alignment(void) const = 0;
|
||||
virtual size_t maxSize(void) const = 0;
|
||||
};
|
||||
|
||||
inline INCVMemAllocator::~INCVMemAllocator() {}
|
||||
|
||||
|
||||
/**
|
||||
* NCVMemStackAllocator
|
||||
*/
|
||||
class NCVMemStackAllocator : public INCVMemAllocator
|
||||
{
|
||||
NCVMemStackAllocator();
|
||||
NCVMemStackAllocator(const NCVMemStackAllocator &);
|
||||
|
||||
public:
|
||||
|
||||
explicit NCVMemStackAllocator(Ncv32u alignment);
|
||||
NCVMemStackAllocator(NCVMemoryType memT, size_t capacity, Ncv32u alignment);
|
||||
virtual ~NCVMemStackAllocator();
|
||||
|
||||
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
|
||||
virtual NCVStatus dealloc(NCVMemSegment &seg);
|
||||
|
||||
virtual NcvBool isInitialized(void) const;
|
||||
virtual NcvBool isCounting(void) const;
|
||||
|
||||
virtual NCVMemoryType memType(void) const;
|
||||
virtual Ncv32u alignment(void) const;
|
||||
virtual size_t maxSize(void) const;
|
||||
|
||||
private:
|
||||
|
||||
NCVMemoryType _memType;
|
||||
Ncv32u _alignment;
|
||||
Ncv8u *allocBegin;
|
||||
Ncv8u *begin;
|
||||
Ncv8u *end;
|
||||
size_t currentSize;
|
||||
size_t _maxSize;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVMemNativeAllocator
|
||||
*/
|
||||
class NCVMemNativeAllocator : public INCVMemAllocator
|
||||
{
|
||||
public:
|
||||
|
||||
NCVMemNativeAllocator(NCVMemoryType memT);
|
||||
virtual ~NCVMemNativeAllocator();
|
||||
|
||||
virtual NCVStatus alloc(NCVMemSegment &seg, size_t size);
|
||||
virtual NCVStatus dealloc(NCVMemSegment &seg);
|
||||
|
||||
virtual NcvBool isInitialized(void) const;
|
||||
virtual NcvBool isCounting(void) const;
|
||||
|
||||
virtual NCVMemoryType memType(void) const;
|
||||
virtual Ncv32u alignment(void) const;
|
||||
virtual size_t maxSize(void) const;
|
||||
|
||||
private:
|
||||
|
||||
NCVMemNativeAllocator();
|
||||
NCVMemNativeAllocator(const NCVMemNativeAllocator &);
|
||||
|
||||
NCVMemoryType _memType;
|
||||
Ncv32u _alignment;
|
||||
size_t currentSize;
|
||||
size_t _maxSize;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Copy dispatcher
|
||||
*/
|
||||
NCVStatus memSegCopyHelper(void *dst, NCVMemoryType dstType,
|
||||
const void *src, NCVMemoryType srcType,
|
||||
size_t sz, cudaStream_t cuStream);
|
||||
|
||||
|
||||
/**
|
||||
* NCVVector (1D)
|
||||
*/
|
||||
template <class T>
|
||||
class NCVVector
|
||||
{
|
||||
NCVVector(const NCVVector &);
|
||||
|
||||
public:
|
||||
|
||||
NCVVector()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
virtual ~NCVVector() {}
|
||||
|
||||
void clear()
|
||||
{
|
||||
_ptr = NULL;
|
||||
_length = 0;
|
||||
_memtype = NCVMemoryTypeNone;
|
||||
}
|
||||
|
||||
NCVStatus copySolid(NCVVector<T> &dst, cudaStream_t cuStream, size_t howMuch=0)
|
||||
{
|
||||
if (howMuch == 0)
|
||||
{
|
||||
ncvAssertReturn(dst._length == this->_length, NCV_MEM_COPY_ERROR);
|
||||
howMuch = this->_length * sizeof(T);
|
||||
}
|
||||
else
|
||||
{
|
||||
ncvAssertReturn(dst._length * sizeof(T) >= howMuch &&
|
||||
this->_length * sizeof(T) >= howMuch &&
|
||||
howMuch > 0, NCV_MEM_COPY_ERROR);
|
||||
}
|
||||
ncvAssertReturn((this->_ptr != NULL || this->_memtype == NCVMemoryTypeNone) &&
|
||||
(dst._ptr != NULL || dst._memtype == NCVMemoryTypeNone), NCV_NULL_PTR);
|
||||
|
||||
NCVStatus ncvStat = NCV_SUCCESS;
|
||||
if (this->_memtype != NCVMemoryTypeNone)
|
||||
{
|
||||
ncvStat = memSegCopyHelper(dst._ptr, dst._memtype,
|
||||
this->_ptr, this->_memtype,
|
||||
howMuch, cuStream);
|
||||
}
|
||||
|
||||
return ncvStat;
|
||||
}
|
||||
|
||||
T *ptr() const {return this->_ptr;}
|
||||
size_t length() const {return this->_length;}
|
||||
NCVMemoryType memType() const {return this->_memtype;}
|
||||
|
||||
protected:
|
||||
|
||||
T *_ptr;
|
||||
size_t _length;
|
||||
NCVMemoryType _memtype;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVVectorAlloc
|
||||
*/
|
||||
template <class T>
|
||||
class NCVVectorAlloc : public NCVVector<T>
|
||||
{
|
||||
NCVVectorAlloc();
|
||||
NCVVectorAlloc(const NCVVectorAlloc &);
|
||||
|
||||
public:
|
||||
|
||||
NCVVectorAlloc(INCVMemAllocator &allocator, Ncv32u length)
|
||||
:
|
||||
allocator(allocator)
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
|
||||
this->clear();
|
||||
this->allocatedMem.clear();
|
||||
|
||||
ncvStat = allocator.alloc(this->allocatedMem, length * sizeof(T));
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "NCVVectorAlloc ctor:: alloc failed", );
|
||||
|
||||
this->_ptr = (T *)this->allocatedMem.begin.ptr;
|
||||
this->_length = length;
|
||||
this->_memtype = this->allocatedMem.begin.memtype;
|
||||
}
|
||||
|
||||
|
||||
~NCVVectorAlloc()
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
|
||||
ncvStat = allocator.dealloc(this->allocatedMem);
|
||||
ncvAssertPrintCheck(ncvStat == NCV_SUCCESS, "NCVVectorAlloc dtor:: dealloc failed");
|
||||
|
||||
this->clear();
|
||||
}
|
||||
|
||||
|
||||
NcvBool isMemAllocated() const
|
||||
{
|
||||
return (this->allocatedMem.begin.ptr != NULL) || (this->allocator.isCounting());
|
||||
}
|
||||
|
||||
|
||||
Ncv32u getAllocatorsAlignment() const
|
||||
{
|
||||
return allocator.alignment();
|
||||
}
|
||||
|
||||
|
||||
NCVMemSegment getSegment() const
|
||||
{
|
||||
return allocatedMem;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
INCVMemAllocator &allocator;
|
||||
NCVMemSegment allocatedMem;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVVectorReuse
|
||||
*/
|
||||
template <class T>
|
||||
class NCVVectorReuse : public NCVVector<T>
|
||||
{
|
||||
NCVVectorReuse();
|
||||
NCVVectorReuse(const NCVVectorReuse &);
|
||||
|
||||
public:
|
||||
|
||||
explicit NCVVectorReuse(const NCVMemSegment &memSegment)
|
||||
{
|
||||
this->bReused = false;
|
||||
this->clear();
|
||||
|
||||
this->_length = memSegment.size / sizeof(T);
|
||||
this->_ptr = (T *)memSegment.begin.ptr;
|
||||
this->_memtype = memSegment.begin.memtype;
|
||||
|
||||
this->bReused = true;
|
||||
}
|
||||
|
||||
|
||||
NCVVectorReuse(const NCVMemSegment &memSegment, Ncv32u length)
|
||||
{
|
||||
this->bReused = false;
|
||||
this->clear();
|
||||
|
||||
ncvAssertPrintReturn(length * sizeof(T) <= memSegment.size, \
|
||||
"NCVVectorReuse ctor:: memory binding failed due to size mismatch", );
|
||||
|
||||
this->_length = length;
|
||||
this->_ptr = (T *)memSegment.begin.ptr;
|
||||
this->_memtype = memSegment.begin.memtype;
|
||||
|
||||
this->bReused = true;
|
||||
}
|
||||
|
||||
|
||||
NcvBool isMemReused() const
|
||||
{
|
||||
return this->bReused;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
NcvBool bReused;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVMatrix (2D)
|
||||
*/
|
||||
template <class T>
|
||||
class NCVMatrix
|
||||
{
|
||||
NCVMatrix(const NCVMatrix &);
|
||||
|
||||
public:
|
||||
|
||||
NCVMatrix()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
virtual ~NCVMatrix() {}
|
||||
|
||||
|
||||
void clear()
|
||||
{
|
||||
_ptr = NULL;
|
||||
_pitch = 0;
|
||||
_width = 0;
|
||||
_height = 0;
|
||||
_memtype = NCVMemoryTypeNone;
|
||||
}
|
||||
|
||||
|
||||
Ncv32u stride() const
|
||||
{
|
||||
return _pitch / sizeof(T);
|
||||
}
|
||||
|
||||
|
||||
NCVStatus copySolid(NCVMatrix<T> &dst, cudaStream_t cuStream, size_t howMuch=0)
|
||||
{
|
||||
if (howMuch == 0)
|
||||
{
|
||||
ncvAssertReturn(dst._pitch == this->_pitch &&
|
||||
dst._height == this->_height, NCV_MEM_COPY_ERROR);
|
||||
howMuch = this->_pitch * this->_height;
|
||||
}
|
||||
else
|
||||
{
|
||||
ncvAssertReturn(dst._pitch * dst._height >= howMuch &&
|
||||
this->_pitch * this->_height >= howMuch &&
|
||||
howMuch > 0, NCV_MEM_COPY_ERROR);
|
||||
}
|
||||
ncvAssertReturn((this->_ptr != NULL || this->_memtype == NCVMemoryTypeNone) &&
|
||||
(dst._ptr != NULL || dst._memtype == NCVMemoryTypeNone), NCV_NULL_PTR);
|
||||
|
||||
NCVStatus ncvStat = NCV_SUCCESS;
|
||||
if (this->_memtype != NCVMemoryTypeNone)
|
||||
{
|
||||
ncvStat = memSegCopyHelper(dst._ptr, dst._memtype,
|
||||
this->_ptr, this->_memtype,
|
||||
howMuch, cuStream);
|
||||
}
|
||||
|
||||
return ncvStat;
|
||||
}
|
||||
|
||||
T *ptr() const {return this->_ptr;}
|
||||
Ncv32u width() const {return this->_width;}
|
||||
Ncv32u height() const {return this->_height;}
|
||||
Ncv32u pitch() const {return this->_pitch;}
|
||||
NCVMemoryType memType() const {return this->_memtype;}
|
||||
|
||||
protected:
|
||||
|
||||
T *_ptr;
|
||||
Ncv32u _width;
|
||||
Ncv32u _height;
|
||||
Ncv32u _pitch;
|
||||
NCVMemoryType _memtype;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVMatrixAlloc
|
||||
*/
|
||||
template <class T>
|
||||
class NCVMatrixAlloc : public NCVMatrix<T>
|
||||
{
|
||||
NCVMatrixAlloc();
|
||||
NCVMatrixAlloc(const NCVMatrixAlloc &);
|
||||
|
||||
public:
|
||||
|
||||
NCVMatrixAlloc(INCVMemAllocator &allocator, Ncv32u width, Ncv32u height, Ncv32u pitch=0)
|
||||
:
|
||||
allocator(allocator)
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
|
||||
this->clear();
|
||||
this->allocatedMem.clear();
|
||||
|
||||
Ncv32u widthBytes = width * sizeof(T);
|
||||
Ncv32u pitchBytes = alignUp(widthBytes, allocator.alignment());
|
||||
|
||||
if (pitch != 0)
|
||||
{
|
||||
ncvAssertPrintReturn(pitch >= pitchBytes &&
|
||||
(pitch & (allocator.alignment() - 1)) == 0,
|
||||
"NCVMatrixAlloc ctor:: incorrect pitch passed", );
|
||||
pitchBytes = pitch;
|
||||
}
|
||||
|
||||
Ncv32u requiredAllocSize = pitchBytes * height;
|
||||
|
||||
ncvStat = allocator.alloc(this->allocatedMem, requiredAllocSize);
|
||||
ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "NCVMatrixAlloc ctor:: alloc failed", );
|
||||
|
||||
this->_ptr = (T *)this->allocatedMem.begin.ptr;
|
||||
this->_width = width;
|
||||
this->_height = height;
|
||||
this->_pitch = pitchBytes;
|
||||
this->_memtype = this->allocatedMem.begin.memtype;
|
||||
}
|
||||
|
||||
~NCVMatrixAlloc()
|
||||
{
|
||||
NCVStatus ncvStat;
|
||||
|
||||
ncvStat = allocator.dealloc(this->allocatedMem);
|
||||
ncvAssertPrintCheck(ncvStat == NCV_SUCCESS, "NCVMatrixAlloc dtor:: dealloc failed");
|
||||
|
||||
this->clear();
|
||||
}
|
||||
|
||||
|
||||
NcvBool isMemAllocated() const
|
||||
{
|
||||
return (this->allocatedMem.begin.ptr != NULL) || (this->allocator.isCounting());
|
||||
}
|
||||
|
||||
|
||||
Ncv32u getAllocatorsAlignment() const
|
||||
{
|
||||
return allocator.alignment();
|
||||
}
|
||||
|
||||
|
||||
NCVMemSegment getSegment() const
|
||||
{
|
||||
return allocatedMem;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
INCVMemAllocator &allocator;
|
||||
NCVMemSegment allocatedMem;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* NCVMatrixReuse
|
||||
*/
|
||||
template <class T>
|
||||
class NCVMatrixReuse : public NCVMatrix<T>
|
||||
{
|
||||
NCVMatrixReuse();
|
||||
NCVMatrixReuse(const NCVMatrixReuse &);
|
||||
|
||||
public:
|
||||
|
||||
NCVMatrixReuse(const NCVMemSegment &memSegment, Ncv32u alignment, Ncv32u width, Ncv32u height, Ncv32u pitch=0, NcvBool bSkipPitchCheck=false)
|
||||
{
|
||||
this->bReused = false;
|
||||
this->clear();
|
||||
|
||||
Ncv32u widthBytes = width * sizeof(T);
|
||||
Ncv32u pitchBytes = alignUp(widthBytes, alignment);
|
||||
|
||||
if (pitch != 0)
|
||||
{
|
||||
if (!bSkipPitchCheck)
|
||||
{
|
||||
ncvAssertPrintReturn(pitch >= pitchBytes &&
|
||||
(pitch & (alignment - 1)) == 0,
|
||||
"NCVMatrixReuse ctor:: incorrect pitch passed", );
|
||||
}
|
||||
else
|
||||
{
|
||||
ncvAssertPrintReturn(pitch >= widthBytes, "NCVMatrixReuse ctor:: incorrect pitch passed", );
|
||||
}
|
||||
pitchBytes = pitch;
|
||||
}
|
||||
|
||||
ncvAssertPrintReturn(pitchBytes * height <= memSegment.size, \
|
||||
"NCVMatrixReuse ctor:: memory binding failed due to size mismatch", );
|
||||
|
||||
this->_width = width;
|
||||
this->_height = height;
|
||||
this->_pitch = pitchBytes;
|
||||
this->_ptr = (T *)memSegment.begin.ptr;
|
||||
this->_memtype = memSegment.begin.memtype;
|
||||
|
||||
this->bReused = true;
|
||||
}
|
||||
|
||||
|
||||
NcvBool isMemReused() const
|
||||
{
|
||||
return this->bReused;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
NcvBool bReused;
|
||||
};
|
||||
|
||||
#endif // _ncv_hpp_
|
2603
modules/gpu/src/nvidia/NCVHaarObjectDetection.cu
Normal file
2603
modules/gpu/src/nvidia/NCVHaarObjectDetection.cu
Normal file
File diff suppressed because it is too large
Load Diff
501
modules/gpu/src/nvidia/NCVHaarObjectDetection.hpp
Normal file
501
modules/gpu/src/nvidia/NCVHaarObjectDetection.hpp
Normal file
@@ -0,0 +1,501 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2009-2010, NVIDIA Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// NVIDIA CUDA implementation of Viola-Jones Object Detection Framework
|
||||
//
|
||||
// The algorithm and code are explained in the upcoming GPU Computing Gems
|
||||
// chapter in detail:
|
||||
//
|
||||
// Anton Obukhov, "Haar Classifiers for Object Detection with CUDA"
|
||||
// PDF URL placeholder
|
||||
// email: aobukhov@nvidia.com, devsupport@nvidia.com
|
||||
//
|
||||
// Credits for help with the code to:
|
||||
// Alexey Mendelenko, Cyril Crassin, and Mikhail Smirnov.
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _ncvhaarobjectdetection_hpp_
|
||||
#define _ncvhaarobjectdetection_hpp_
|
||||
|
||||
#include <string>
|
||||
#include "NCV.hpp"
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Guaranteed size cross-platform classifier structures
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
struct HaarFeature64
|
||||
{
|
||||
uint2 _ui2;
|
||||
|
||||
#define HaarFeature64_CreateCheck_MaxRectField 0xFF
|
||||
|
||||
__host__ NCVStatus setRect(Ncv32u rectX, Ncv32u rectY, Ncv32u rectWidth, Ncv32u rectHeight, Ncv32u clsWidth, Ncv32u clsHeight)
|
||||
{
|
||||
ncvAssertReturn(rectWidth <= HaarFeature64_CreateCheck_MaxRectField && rectHeight <= HaarFeature64_CreateCheck_MaxRectField, NCV_HAAR_TOO_LARGE_FEATURES);
|
||||
((NcvRect8u*)&(this->_ui2.x))->x = rectX;
|
||||
((NcvRect8u*)&(this->_ui2.x))->y = rectY;
|
||||
((NcvRect8u*)&(this->_ui2.x))->width = rectWidth;
|
||||
((NcvRect8u*)&(this->_ui2.x))->height = rectHeight;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus setWeight(Ncv32f weight)
|
||||
{
|
||||
((Ncv32f*)&(this->_ui2.y))[0] = weight;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__device__ __host__ void getRect(Ncv32u *rectX, Ncv32u *rectY, Ncv32u *rectWidth, Ncv32u *rectHeight)
|
||||
{
|
||||
NcvRect8u tmpRect = *(NcvRect8u*)(&this->_ui2.x);
|
||||
*rectX = tmpRect.x;
|
||||
*rectY = tmpRect.y;
|
||||
*rectWidth = tmpRect.width;
|
||||
*rectHeight = tmpRect.height;
|
||||
}
|
||||
|
||||
__device__ __host__ Ncv32f getWeight(void)
|
||||
{
|
||||
return *(Ncv32f*)(&this->_ui2.y);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct HaarFeatureDescriptor32
|
||||
{
|
||||
private:
|
||||
|
||||
#define HaarFeatureDescriptor32_Interpret_MaskFlagTilted 0x80000000
|
||||
#define HaarFeatureDescriptor32_CreateCheck_MaxNumFeatures 0x7F
|
||||
#define HaarFeatureDescriptor32_NumFeatures_Shift 24
|
||||
#define HaarFeatureDescriptor32_CreateCheck_MaxFeatureOffset 0x00FFFFFF
|
||||
|
||||
Ncv32u desc;
|
||||
|
||||
public:
|
||||
|
||||
__host__ NCVStatus create(NcvBool bTilted, Ncv32u numFeatures, Ncv32u offsetFeatures)
|
||||
{
|
||||
if (numFeatures > HaarFeatureDescriptor32_CreateCheck_MaxNumFeatures)
|
||||
{
|
||||
return NCV_HAAR_TOO_MANY_FEATURES_IN_CLASSIFIER;
|
||||
}
|
||||
if (offsetFeatures > HaarFeatureDescriptor32_CreateCheck_MaxFeatureOffset)
|
||||
{
|
||||
return NCV_HAAR_TOO_MANY_FEATURES_IN_CASCADE;
|
||||
}
|
||||
this->desc = 0;
|
||||
this->desc |= (bTilted ? HaarFeatureDescriptor32_Interpret_MaskFlagTilted : 0);
|
||||
this->desc |= (numFeatures << HaarFeatureDescriptor32_NumFeatures_Shift);
|
||||
this->desc |= offsetFeatures;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__device__ __host__ NcvBool isTilted(void)
|
||||
{
|
||||
return (this->desc & HaarFeatureDescriptor32_Interpret_MaskFlagTilted) != 0;
|
||||
}
|
||||
|
||||
__device__ __host__ Ncv32u getNumFeatures(void)
|
||||
{
|
||||
return (this->desc & ~HaarFeatureDescriptor32_Interpret_MaskFlagTilted) >> HaarFeatureDescriptor32_NumFeatures_Shift;
|
||||
}
|
||||
|
||||
__device__ __host__ Ncv32u getFeaturesOffset(void)
|
||||
{
|
||||
return this->desc & HaarFeatureDescriptor32_CreateCheck_MaxFeatureOffset;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct HaarClassifierNodeDescriptor32
|
||||
{
|
||||
uint1 _ui1;
|
||||
|
||||
#define HaarClassifierNodeDescriptor32_Interpret_MaskSwitch (1 << 30)
|
||||
|
||||
__host__ NCVStatus create(Ncv32f leafValue)
|
||||
{
|
||||
if ((*(Ncv32u *)&leafValue) & HaarClassifierNodeDescriptor32_Interpret_MaskSwitch)
|
||||
{
|
||||
return NCV_HAAR_XML_LOADING_EXCEPTION;
|
||||
}
|
||||
*(Ncv32f *)&this->_ui1 = leafValue;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus create(Ncv32u offsetHaarClassifierNode)
|
||||
{
|
||||
if (offsetHaarClassifierNode >= HaarClassifierNodeDescriptor32_Interpret_MaskSwitch)
|
||||
{
|
||||
return NCV_HAAR_XML_LOADING_EXCEPTION;
|
||||
}
|
||||
this->_ui1.x = offsetHaarClassifierNode;
|
||||
this->_ui1.x |= HaarClassifierNodeDescriptor32_Interpret_MaskSwitch;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__device__ __host__ NcvBool isLeaf(void)
|
||||
{
|
||||
return !(this->_ui1.x & HaarClassifierNodeDescriptor32_Interpret_MaskSwitch);
|
||||
}
|
||||
|
||||
__host__ Ncv32f getLeafValueHost(void)
|
||||
{
|
||||
return *(Ncv32f *)&this->_ui1.x;
|
||||
}
|
||||
|
||||
#ifdef __CUDACC__
|
||||
__device__ Ncv32f getLeafValue(void)
|
||||
{
|
||||
return __int_as_float(this->_ui1.x);
|
||||
}
|
||||
#endif
|
||||
|
||||
__device__ __host__ Ncv32u getNextNodeOffset(void)
|
||||
{
|
||||
return (this->_ui1.x & ~HaarClassifierNodeDescriptor32_Interpret_MaskSwitch);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct HaarClassifierNode128
|
||||
{
|
||||
uint4 _ui4;
|
||||
|
||||
__host__ NCVStatus setFeatureDesc(HaarFeatureDescriptor32 f)
|
||||
{
|
||||
this->_ui4.x = *(Ncv32u *)&f;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus setThreshold(Ncv32f t)
|
||||
{
|
||||
this->_ui4.y = *(Ncv32u *)&t;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus setLeftNodeDesc(HaarClassifierNodeDescriptor32 nl)
|
||||
{
|
||||
this->_ui4.z = *(Ncv32u *)&nl;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus setRightNodeDesc(HaarClassifierNodeDescriptor32 nr)
|
||||
{
|
||||
this->_ui4.w = *(Ncv32u *)&nr;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ __device__ HaarFeatureDescriptor32 getFeatureDesc(void)
|
||||
{
|
||||
return *(HaarFeatureDescriptor32 *)&this->_ui4.x;
|
||||
}
|
||||
|
||||
__host__ __device__ Ncv32f getThreshold(void)
|
||||
{
|
||||
return *(Ncv32f*)&this->_ui4.y;
|
||||
}
|
||||
|
||||
__host__ __device__ HaarClassifierNodeDescriptor32 getLeftNodeDesc(void)
|
||||
{
|
||||
return *(HaarClassifierNodeDescriptor32 *)&this->_ui4.z;
|
||||
}
|
||||
|
||||
__host__ __device__ HaarClassifierNodeDescriptor32 getRightNodeDesc(void)
|
||||
{
|
||||
return *(HaarClassifierNodeDescriptor32 *)&this->_ui4.w;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
struct HaarStage64
|
||||
{
|
||||
#define HaarStage64_Interpret_MaskRootNodes 0x0000FFFF
|
||||
#define HaarStage64_Interpret_MaskRootNodeOffset 0xFFFF0000
|
||||
#define HaarStage64_Interpret_ShiftRootNodeOffset 16
|
||||
|
||||
uint2 _ui2;
|
||||
|
||||
__host__ NCVStatus setStageThreshold(Ncv32f t)
|
||||
{
|
||||
this->_ui2.x = *(Ncv32u *)&t;
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus setStartClassifierRootNodeOffset(Ncv32u val)
|
||||
{
|
||||
if (val > (HaarStage64_Interpret_MaskRootNodeOffset >> HaarStage64_Interpret_ShiftRootNodeOffset))
|
||||
{
|
||||
return NCV_HAAR_XML_LOADING_EXCEPTION;
|
||||
}
|
||||
this->_ui2.y = (val << HaarStage64_Interpret_ShiftRootNodeOffset) | (this->_ui2.y & HaarStage64_Interpret_MaskRootNodes);
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ NCVStatus setNumClassifierRootNodes(Ncv32u val)
|
||||
{
|
||||
if (val > HaarStage64_Interpret_MaskRootNodes)
|
||||
{
|
||||
return NCV_HAAR_XML_LOADING_EXCEPTION;
|
||||
}
|
||||
this->_ui2.y = val | (this->_ui2.y & HaarStage64_Interpret_MaskRootNodeOffset);
|
||||
return NCV_SUCCESS;
|
||||
}
|
||||
|
||||
__host__ __device__ Ncv32f getStageThreshold(void)
|
||||
{
|
||||
return *(Ncv32f*)&this->_ui2.x;
|
||||
}
|
||||
|
||||
__host__ __device__ Ncv32u getStartClassifierRootNodeOffset(void)
|
||||
{
|
||||
return (this->_ui2.y >> HaarStage64_Interpret_ShiftRootNodeOffset);
|
||||
}
|
||||
|
||||
__host__ __device__ Ncv32u getNumClassifierRootNodes(void)
|
||||
{
|
||||
return (this->_ui2.y & HaarStage64_Interpret_MaskRootNodes);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
NPPST_CT_ASSERT(sizeof(HaarFeature64) == 8);
|
||||
NPPST_CT_ASSERT(sizeof(HaarFeatureDescriptor32) == 4);
|
||||
NPPST_CT_ASSERT(sizeof(HaarClassifierNodeDescriptor32) == 4);
|
||||
NPPST_CT_ASSERT(sizeof(HaarClassifierNode128) == 16);
|
||||
NPPST_CT_ASSERT(sizeof(HaarStage64) == 8);
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Classifier cascade descriptor
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
struct HaarClassifierCascadeDescriptor
|
||||
{
|
||||
Ncv32u NumStages;
|
||||
Ncv32u NumClassifierRootNodes;
|
||||
Ncv32u NumClassifierTotalNodes;
|
||||
Ncv32u NumFeatures;
|
||||
NcvSize32u ClassifierSize;
|
||||
NcvBool bNeedsTiltedII;
|
||||
NcvBool bHasStumpsOnly;
|
||||
};
|
||||
|
||||
|
||||
//==============================================================================
|
||||
//
|
||||
// Functional interface
|
||||
//
|
||||
//==============================================================================
|
||||
|
||||
|
||||
enum
|
||||
{
|
||||
NCVPipeObjDet_Default = 0x000,
|
||||
NCVPipeObjDet_UseFairImageScaling = 0x001,
|
||||
NCVPipeObjDet_FindLargestObject = 0x002,
|
||||
NCVPipeObjDet_VisualizeInPlace = 0x004,
|
||||
};
|
||||
|
||||
|
||||
NCVStatus ncvDetectObjectsMultiScale_device(NCVMatrix<Ncv8u> &d_srcImg,
|
||||
NcvSize32u srcRoi,
|
||||
NCVVector<NcvRect32u> &d_dstRects,
|
||||
Ncv32u &dstNumRects,
|
||||
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
NCVVector<HaarStage64> &h_HaarStages,
|
||||
NCVVector<HaarStage64> &d_HaarStages,
|
||||
NCVVector<HaarClassifierNode128> &d_HaarNodes,
|
||||
NCVVector<HaarFeature64> &d_HaarFeatures,
|
||||
|
||||
NcvSize32u minObjSize,
|
||||
Ncv32u minNeighbors, //default 4
|
||||
Ncv32f scaleStep, //default 1.2f
|
||||
Ncv32u pixelStep, //default 1
|
||||
Ncv32u flags, //default NCVPipeObjDet_Default
|
||||
|
||||
INCVMemAllocator &gpuAllocator,
|
||||
INCVMemAllocator &cpuAllocator,
|
||||
Ncv32u devPropMajor,
|
||||
Ncv32u devPropMinor,
|
||||
cudaStream_t cuStream);
|
||||
|
||||
|
||||
#define OBJDET_MASK_ELEMENT_INVALID_32U 0xFFFFFFFF
|
||||
#define HAAR_STDDEV_BORDER 1
|
||||
|
||||
|
||||
NCVStatus ncvApplyHaarClassifierCascade_device(NCVMatrix<Ncv32u> &d_integralImage,
|
||||
NCVMatrix<Ncv32f> &d_weights,
|
||||
NCVMatrixAlloc<Ncv32u> &d_pixelMask,
|
||||
Ncv32u &numDetections,
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
NCVVector<HaarStage64> &h_HaarStages,
|
||||
NCVVector<HaarStage64> &d_HaarStages,
|
||||
NCVVector<HaarClassifierNode128> &d_HaarNodes,
|
||||
NCVVector<HaarFeature64> &d_HaarFeatures,
|
||||
NcvBool bMaskElements,
|
||||
NcvSize32u anchorsRoi,
|
||||
Ncv32u pixelStep,
|
||||
Ncv32f scaleArea,
|
||||
INCVMemAllocator &gpuAllocator,
|
||||
INCVMemAllocator &cpuAllocator,
|
||||
Ncv32u devPropMajor,
|
||||
Ncv32u devPropMinor,
|
||||
cudaStream_t cuStream);
|
||||
|
||||
|
||||
NCVStatus ncvApplyHaarClassifierCascade_host(NCVMatrix<Ncv32u> &h_integralImage,
|
||||
NCVMatrix<Ncv32f> &h_weights,
|
||||
NCVMatrixAlloc<Ncv32u> &h_pixelMask,
|
||||
Ncv32u &numDetections,
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
NCVVector<HaarStage64> &h_HaarStages,
|
||||
NCVVector<HaarClassifierNode128> &h_HaarNodes,
|
||||
NCVVector<HaarFeature64> &h_HaarFeatures,
|
||||
NcvBool bMaskElements,
|
||||
NcvSize32u anchorsRoi,
|
||||
Ncv32u pixelStep,
|
||||
Ncv32f scaleArea);
|
||||
|
||||
|
||||
NCVStatus ncvDrawRects_8u_device(Ncv8u *d_dst,
|
||||
Ncv32u dstStride,
|
||||
Ncv32u dstWidth,
|
||||
Ncv32u dstHeight,
|
||||
NcvRect32u *d_rects,
|
||||
Ncv32u numRects,
|
||||
Ncv8u color,
|
||||
cudaStream_t cuStream);
|
||||
|
||||
|
||||
NCVStatus ncvDrawRects_32u_device(Ncv32u *d_dst,
|
||||
Ncv32u dstStride,
|
||||
Ncv32u dstWidth,
|
||||
Ncv32u dstHeight,
|
||||
NcvRect32u *d_rects,
|
||||
Ncv32u numRects,
|
||||
Ncv32u color,
|
||||
cudaStream_t cuStream);
|
||||
|
||||
|
||||
NCVStatus ncvDrawRects_8u_host(Ncv8u *h_dst,
|
||||
Ncv32u dstStride,
|
||||
Ncv32u dstWidth,
|
||||
Ncv32u dstHeight,
|
||||
NcvRect32u *h_rects,
|
||||
Ncv32u numRects,
|
||||
Ncv8u color);
|
||||
|
||||
|
||||
NCVStatus ncvDrawRects_32u_host(Ncv32u *h_dst,
|
||||
Ncv32u dstStride,
|
||||
Ncv32u dstWidth,
|
||||
Ncv32u dstHeight,
|
||||
NcvRect32u *h_rects,
|
||||
Ncv32u numRects,
|
||||
Ncv32u color);
|
||||
|
||||
|
||||
#define RECT_SIMILARITY_PROPORTION 0.2f
|
||||
|
||||
|
||||
NCVStatus ncvGrowDetectionsVector_device(NCVVector<Ncv32u> &pixelMask,
|
||||
Ncv32u numPixelMaskDetections,
|
||||
NCVVector<NcvRect32u> &hypotheses,
|
||||
Ncv32u &totalDetections,
|
||||
Ncv32u totalMaxDetections,
|
||||
Ncv32u rectWidth,
|
||||
Ncv32u rectHeight,
|
||||
Ncv32f curScale,
|
||||
cudaStream_t cuStream);
|
||||
|
||||
|
||||
NCVStatus ncvGrowDetectionsVector_host(NCVVector<Ncv32u> &pixelMask,
|
||||
Ncv32u numPixelMaskDetections,
|
||||
NCVVector<NcvRect32u> &hypotheses,
|
||||
Ncv32u &totalDetections,
|
||||
Ncv32u totalMaxDetections,
|
||||
Ncv32u rectWidth,
|
||||
Ncv32u rectHeight,
|
||||
Ncv32f curScale);
|
||||
|
||||
|
||||
NCVStatus ncvFilterHypotheses_host(NCVVector<NcvRect32u> &hypotheses,
|
||||
Ncv32u &numHypotheses,
|
||||
Ncv32u minNeighbors,
|
||||
Ncv32f intersectEps,
|
||||
NCVVector<Ncv32u> *hypothesesWeights);
|
||||
|
||||
|
||||
NCVStatus ncvHaarGetClassifierSize(const std::string &filename, Ncv32u &numStages,
|
||||
Ncv32u &numNodes, Ncv32u &numFeatures);
|
||||
|
||||
|
||||
NCVStatus ncvHaarLoadFromFile_host(const std::string &filename,
|
||||
HaarClassifierCascadeDescriptor &haar,
|
||||
NCVVector<HaarStage64> &h_HaarStages,
|
||||
NCVVector<HaarClassifierNode128> &h_HaarNodes,
|
||||
NCVVector<HaarFeature64> &h_HaarFeatures);
|
||||
|
||||
|
||||
NCVStatus ncvHaarStoreNVBIN_host(const std::string &filename,
|
||||
HaarClassifierCascadeDescriptor haar,
|
||||
NCVVector<HaarStage64> &h_HaarStages,
|
||||
NCVVector<HaarClassifierNode128> &h_HaarNodes,
|
||||
NCVVector<HaarFeature64> &h_HaarFeatures);
|
||||
|
||||
|
||||
|
||||
#endif // _ncvhaarobjectdetection_hpp_
|
174
modules/gpu/src/nvidia/NCVRuntimeTemplates.hpp
Normal file
174
modules/gpu/src/nvidia/NCVRuntimeTemplates.hpp
Normal file
@@ -0,0 +1,174 @@
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// The Loki Library
|
||||
// Copyright (c) 2001 by Andrei Alexandrescu
|
||||
// This code accompanies the book:
|
||||
// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design
|
||||
// Patterns Applied". Copyright (c) 2001. Addison-Wesley.
|
||||
// Permission to use, copy, modify, distribute and sell this software for any
|
||||
// purpose is hereby granted without fee, provided that the above copyright
|
||||
// notice appear in all copies and that both that copyright notice and this
|
||||
// permission notice appear in supporting documentation.
|
||||
// The author or Addison-Welsey Longman make no representations about the
|
||||
// suitability of this software for any purpose. It is provided "as is"
|
||||
// without express or implied warranty.
|
||||
// http://loki-lib.sourceforge.net/index.php?n=Main.License
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _ncvruntimetemplates_hpp_
|
||||
#define _ncvruntimetemplates_hpp_
|
||||
|
||||
#include <stdarg.h>
|
||||
#include <vector>
|
||||
|
||||
|
||||
namespace Loki
|
||||
{
|
||||
//==============================================================================
|
||||
// class NullType
|
||||
// Used as a placeholder for "no type here"
|
||||
// Useful as an end marker in typelists
|
||||
//==============================================================================
|
||||
|
||||
class NullType {};
|
||||
|
||||
//==============================================================================
|
||||
// class template Typelist
|
||||
// The building block of typelists of any length
|
||||
// Use it through the LOKI_TYPELIST_NN macros
|
||||
// Defines nested types:
|
||||
// Head (first element, a non-typelist type by convention)
|
||||
// Tail (second element, can be another typelist)
|
||||
//==============================================================================
|
||||
|
||||
template <class T, class U>
|
||||
struct Typelist
|
||||
{
|
||||
typedef T Head;
|
||||
typedef U Tail;
|
||||
};
|
||||
|
||||
//==============================================================================
|
||||
// class template Int2Type
|
||||
// Converts each integral constant into a unique type
|
||||
// Invocation: Int2Type<v> where v is a compile-time constant integral
|
||||
// Defines 'value', an enum that evaluates to v
|
||||
//==============================================================================
|
||||
|
||||
template <int v>
|
||||
struct Int2Type
|
||||
{
|
||||
enum { value = v };
|
||||
};
|
||||
|
||||
namespace TL
|
||||
{
|
||||
//==============================================================================
|
||||
// class template TypeAt
|
||||
// Finds the type at a given index in a typelist
|
||||
// Invocation (TList is a typelist and index is a compile-time integral
|
||||
// constant):
|
||||
// TypeAt<TList, index>::Result
|
||||
// returns the type in position 'index' in TList
|
||||
// If you pass an out-of-bounds index, the result is a compile-time error
|
||||
//==============================================================================
|
||||
|
||||
template <class TList, unsigned int index> struct TypeAt;
|
||||
|
||||
template <class Head, class Tail>
|
||||
struct TypeAt<Typelist<Head, Tail>, 0>
|
||||
{
|
||||
typedef Head Result;
|
||||
};
|
||||
|
||||
template <class Head, class Tail, unsigned int i>
|
||||
struct TypeAt<Typelist<Head, Tail>, i>
|
||||
{
|
||||
typedef typename TypeAt<Tail, i - 1>::Result Result;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Runtime boolean template instance dispatcher
|
||||
// Cyril Crassin <cyril.crassin@icare3d.org>
|
||||
// NVIDIA, 2010
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace NCVRuntimeTemplateBool
|
||||
{
|
||||
//This struct is used to transform a list of parameters into template arguments
|
||||
//The idea is to build a typelist containing the arguments
|
||||
//and to pass this typelist to a user defined functor
|
||||
template<typename TList, int NumArguments, class Func>
|
||||
struct KernelCaller
|
||||
{
|
||||
//Convenience function used by the user
|
||||
//Takes a variable argument list, transforms it into a list
|
||||
static void call(Func &functor, int dummy, ...)
|
||||
{
|
||||
//Vector used to collect arguments
|
||||
std::vector<int> templateParamList;
|
||||
|
||||
//Variable argument list manipulation
|
||||
va_list listPointer;
|
||||
va_start(listPointer, dummy);
|
||||
//Collect parameters into the list
|
||||
for(int i=0; i<NumArguments; i++)
|
||||
{
|
||||
int val = va_arg(listPointer, int);
|
||||
templateParamList.push_back(val);
|
||||
}
|
||||
va_end(listPointer);
|
||||
|
||||
//Call the actual typelist building function
|
||||
call(functor, templateParamList);
|
||||
}
|
||||
|
||||
//Actual function called recursively to build a typelist based
|
||||
//on a list of values
|
||||
static void call( Func &functor, std::vector<int> &templateParamList)
|
||||
{
|
||||
//Get current parameter value in the list
|
||||
int val = templateParamList[templateParamList.size() - 1];
|
||||
templateParamList.pop_back();
|
||||
|
||||
//Select the compile time value to add into the typelist
|
||||
//depending on the runtime variable and make recursive call.
|
||||
//Both versions are really instantiated
|
||||
if(val)
|
||||
{
|
||||
KernelCaller<
|
||||
Loki::Typelist<typename Loki::Int2Type<true>, TList >,
|
||||
NumArguments-1, Func >
|
||||
::call(functor, templateParamList);
|
||||
}
|
||||
else
|
||||
{
|
||||
KernelCaller<
|
||||
Loki::Typelist<typename Loki::Int2Type<false>, TList >,
|
||||
NumArguments-1, Func >
|
||||
::call(functor, templateParamList);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//Specialization for 0 value left in the list
|
||||
//-> actual kernel functor call
|
||||
template<class TList, class Func>
|
||||
struct KernelCaller<TList, 0, Func>
|
||||
{
|
||||
static void call(Func &functor)
|
||||
{
|
||||
//Call to the functor's kernel call method
|
||||
functor.call(TList()); //TList instantiated to get the method template parameter resolved
|
||||
}
|
||||
|
||||
static void call(Func &functor, std::vector<int> &templateParams)
|
||||
{
|
||||
functor.call(TList());
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#endif //_ncvruntimetemplates_hpp_
|
Reference in New Issue
Block a user