Move C API of opencv_video to separate file
This commit is contained in:
@@ -7,11 +7,12 @@
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@@ -46,13 +47,9 @@
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/video/background_segm.hpp"
|
||||
|
||||
#ifdef __cplusplus
|
||||
namespace cv
|
||||
{
|
||||
|
||||
CV_EXPORTS bool initModule_video(void);
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif //__OPENCV_VIDEO_HPP__
|
||||
|
@@ -7,7 +7,7 @@
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
@@ -45,7 +45,7 @@
|
||||
#define __OPENCV_BACKGROUND_SEGM_HPP__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include <list>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
@@ -66,6 +66,7 @@ public:
|
||||
};
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
|
||||
|
||||
@@ -97,6 +98,7 @@ CV_EXPORTS_W Ptr<BackgroundSubtractorMOG>
|
||||
double backgroundRatio=0.7, double noiseSigma=0);
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
The class implements the following algorithm:
|
||||
"Improved adaptive Gausian mixture model for background subtraction"
|
||||
@@ -193,6 +195,6 @@ public:
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorGMG> createBackgroundSubtractorGMG(int initializationFrames=120,
|
||||
double decisionThreshold=0.8);
|
||||
|
||||
}
|
||||
} // cv
|
||||
|
||||
#endif
|
||||
|
@@ -7,11 +7,12 @@
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@@ -43,218 +44,95 @@
|
||||
#ifndef __OPENCV_TRACKING_HPP__
|
||||
#define __OPENCV_TRACKING_HPP__
|
||||
|
||||
#ifdef __cplusplus
|
||||
# include "opencv2/core.hpp"
|
||||
# include "opencv2/imgproc.hpp"
|
||||
#endif
|
||||
|
||||
#include "opencv2/imgproc/types_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/****************************************************************************************\
|
||||
* Motion Analysis *
|
||||
\****************************************************************************************/
|
||||
|
||||
/************************************ optical flow ***************************************/
|
||||
|
||||
#define CV_LKFLOW_PYR_A_READY 1
|
||||
#define CV_LKFLOW_PYR_B_READY 2
|
||||
#define CV_LKFLOW_INITIAL_GUESSES 4
|
||||
#define CV_LKFLOW_GET_MIN_EIGENVALS 8
|
||||
|
||||
/* It is Lucas & Kanade method, modified to use pyramids.
|
||||
Also it does several iterations to get optical flow for
|
||||
every point at every pyramid level.
|
||||
Calculates optical flow between two images for certain set of points (i.e.
|
||||
it is a "sparse" optical flow, which is opposite to the previous 3 methods) */
|
||||
CVAPI(void) cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr,
|
||||
CvArr* prev_pyr, CvArr* curr_pyr,
|
||||
const CvPoint2D32f* prev_features,
|
||||
CvPoint2D32f* curr_features,
|
||||
int count,
|
||||
CvSize win_size,
|
||||
int level,
|
||||
char* status,
|
||||
float* track_error,
|
||||
CvTermCriteria criteria,
|
||||
int flags );
|
||||
|
||||
|
||||
/* Modification of a previous sparse optical flow algorithm to calculate
|
||||
affine flow */
|
||||
CVAPI(void) cvCalcAffineFlowPyrLK( const CvArr* prev, const CvArr* curr,
|
||||
CvArr* prev_pyr, CvArr* curr_pyr,
|
||||
const CvPoint2D32f* prev_features,
|
||||
CvPoint2D32f* curr_features,
|
||||
float* matrices, int count,
|
||||
CvSize win_size, int level,
|
||||
char* status, float* track_error,
|
||||
CvTermCriteria criteria, int flags );
|
||||
|
||||
/* Estimate rigid transformation between 2 images or 2 point sets */
|
||||
CVAPI(int) cvEstimateRigidTransform( const CvArr* A, const CvArr* B,
|
||||
CvMat* M, int full_affine );
|
||||
|
||||
/* Estimate optical flow for each pixel using the two-frame G. Farneback algorithm */
|
||||
CVAPI(void) cvCalcOpticalFlowFarneback( const CvArr* prev, const CvArr* next,
|
||||
CvArr* flow, double pyr_scale, int levels,
|
||||
int winsize, int iterations, int poly_n,
|
||||
double poly_sigma, int flags );
|
||||
|
||||
/********************************* motion templates *************************************/
|
||||
|
||||
/****************************************************************************************\
|
||||
* All the motion template functions work only with single channel images. *
|
||||
* Silhouette image must have depth IPL_DEPTH_8U or IPL_DEPTH_8S *
|
||||
* Motion history image must have depth IPL_DEPTH_32F, *
|
||||
* Gradient mask - IPL_DEPTH_8U or IPL_DEPTH_8S, *
|
||||
* Motion orientation image - IPL_DEPTH_32F *
|
||||
* Segmentation mask - IPL_DEPTH_32F *
|
||||
* All the angles are in degrees, all the times are in milliseconds *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Updates motion history image given motion silhouette */
|
||||
CVAPI(void) cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
/* Calculates gradient of the motion history image and fills
|
||||
a mask indicating where the gradient is valid */
|
||||
CVAPI(void) cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation,
|
||||
double delta1, double delta2,
|
||||
int aperture_size CV_DEFAULT(3));
|
||||
|
||||
/* Calculates average motion direction within a selected motion region
|
||||
(region can be selected by setting ROIs and/or by composing a valid gradient mask
|
||||
with the region mask) */
|
||||
CVAPI(double) cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask,
|
||||
const CvArr* mhi, double timestamp,
|
||||
double duration );
|
||||
|
||||
/* Splits a motion history image into a few parts corresponding to separate independent motions
|
||||
(e.g. left hand, right hand) */
|
||||
CVAPI(CvSeq*) cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask,
|
||||
CvMemStorage* storage,
|
||||
double timestamp, double seg_thresh );
|
||||
|
||||
/****************************************************************************************\
|
||||
* Tracking *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Implements CAMSHIFT algorithm - determines object position, size and orientation
|
||||
from the object histogram back project (extension of meanshift) */
|
||||
CVAPI(int) cvCamShift( const CvArr* prob_image, CvRect window,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp,
|
||||
CvBox2D* box CV_DEFAULT(NULL) );
|
||||
|
||||
/* Implements MeanShift algorithm - determines object position
|
||||
from the object histogram back project */
|
||||
CVAPI(int) cvMeanShift( const CvArr* prob_image, CvRect window,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp );
|
||||
|
||||
/*
|
||||
standard Kalman filter (in G. Welch' and G. Bishop's notation):
|
||||
|
||||
x(k)=A*x(k-1)+B*u(k)+w(k) p(w)~N(0,Q)
|
||||
z(k)=H*x(k)+v(k), p(v)~N(0,R)
|
||||
*/
|
||||
typedef struct CvKalman
|
||||
{
|
||||
int MP; /* number of measurement vector dimensions */
|
||||
int DP; /* number of state vector dimensions */
|
||||
int CP; /* number of control vector dimensions */
|
||||
|
||||
/* backward compatibility fields */
|
||||
#if 1
|
||||
float* PosterState; /* =state_pre->data.fl */
|
||||
float* PriorState; /* =state_post->data.fl */
|
||||
float* DynamMatr; /* =transition_matrix->data.fl */
|
||||
float* MeasurementMatr; /* =measurement_matrix->data.fl */
|
||||
float* MNCovariance; /* =measurement_noise_cov->data.fl */
|
||||
float* PNCovariance; /* =process_noise_cov->data.fl */
|
||||
float* KalmGainMatr; /* =gain->data.fl */
|
||||
float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
|
||||
float* PosterErrorCovariance;/* =error_cov_post->data.fl */
|
||||
float* Temp1; /* temp1->data.fl */
|
||||
float* Temp2; /* temp2->data.fl */
|
||||
#endif
|
||||
|
||||
CvMat* state_pre; /* predicted state (x'(k)):
|
||||
x(k)=A*x(k-1)+B*u(k) */
|
||||
CvMat* state_post; /* corrected state (x(k)):
|
||||
x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
|
||||
CvMat* transition_matrix; /* state transition matrix (A) */
|
||||
CvMat* control_matrix; /* control matrix (B)
|
||||
(it is not used if there is no control)*/
|
||||
CvMat* measurement_matrix; /* measurement matrix (H) */
|
||||
CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
|
||||
CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
|
||||
CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)):
|
||||
P'(k)=A*P(k-1)*At + Q)*/
|
||||
CvMat* gain; /* Kalman gain matrix (K(k)):
|
||||
K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
|
||||
CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
|
||||
P(k)=(I-K(k)*H)*P'(k) */
|
||||
CvMat* temp1; /* temporary matrices */
|
||||
CvMat* temp2;
|
||||
CvMat* temp3;
|
||||
CvMat* temp4;
|
||||
CvMat* temp5;
|
||||
} CvKalman;
|
||||
|
||||
/* Creates Kalman filter and sets A, B, Q, R and state to some initial values */
|
||||
CVAPI(CvKalman*) cvCreateKalman( int dynam_params, int measure_params,
|
||||
int control_params CV_DEFAULT(0));
|
||||
|
||||
/* Releases Kalman filter state */
|
||||
CVAPI(void) cvReleaseKalman( CvKalman** kalman);
|
||||
|
||||
/* Updates Kalman filter by time (predicts future state of the system) */
|
||||
CVAPI(const CvMat*) cvKalmanPredict( CvKalman* kalman,
|
||||
const CvMat* control CV_DEFAULT(NULL));
|
||||
|
||||
/* Updates Kalman filter by measurement
|
||||
(corrects state of the system and internal matrices) */
|
||||
CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement );
|
||||
|
||||
#define cvKalmanUpdateByTime cvKalmanPredict
|
||||
#define cvKalmanUpdateByMeasurement cvKalmanCorrect
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
enum { OPTFLOW_USE_INITIAL_FLOW = 4,
|
||||
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
|
||||
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
||||
};
|
||||
|
||||
enum { MOTION_TRANSLATION = 0,
|
||||
MOTION_EUCLIDEAN = 1,
|
||||
MOTION_AFFINE = 2,
|
||||
MOTION_HOMOGRAPHY = 3
|
||||
};
|
||||
|
||||
//! updates motion history image using the current silhouette
|
||||
CV_EXPORTS_W void updateMotionHistory( InputArray silhouette, InputOutputArray mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
//! computes the motion gradient orientation image from the motion history image
|
||||
CV_EXPORTS_W void calcMotionGradient( InputArray mhi, OutputArray mask,
|
||||
OutputArray orientation,
|
||||
double delta1, double delta2,
|
||||
int apertureSize=3 );
|
||||
CV_EXPORTS_W void calcMotionGradient( InputArray mhi, OutputArray mask, OutputArray orientation,
|
||||
double delta1, double delta2, int apertureSize = 3 );
|
||||
|
||||
//! computes the global orientation of the selected motion history image part
|
||||
CV_EXPORTS_W double calcGlobalOrientation( InputArray orientation, InputArray mask,
|
||||
InputArray mhi, double timestamp,
|
||||
double duration );
|
||||
CV_EXPORTS_W double calcGlobalOrientation( InputArray orientation, InputArray mask, InputArray mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
CV_EXPORTS_W void segmentMotion(InputArray mhi, OutputArray segmask,
|
||||
CV_OUT std::vector<Rect>& boundingRects,
|
||||
double timestamp, double segThresh);
|
||||
CV_EXPORTS_W void segmentMotion( InputArray mhi, OutputArray segmask,
|
||||
CV_OUT std::vector<Rect>& boundingRects,
|
||||
double timestamp, double segThresh );
|
||||
|
||||
//! updates the object tracking window using CAMSHIFT algorithm
|
||||
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_OUT CV_IN_OUT Rect& window,
|
||||
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
|
||||
TermCriteria criteria );
|
||||
|
||||
//! updates the object tracking window using meanshift algorithm
|
||||
CV_EXPORTS_W int meanShift( InputArray probImage, CV_OUT CV_IN_OUT Rect& window,
|
||||
TermCriteria criteria );
|
||||
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
|
||||
|
||||
//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
|
||||
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
|
||||
Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101,
|
||||
int derivBorder = BORDER_CONSTANT,
|
||||
bool tryReuseInputImage = true );
|
||||
|
||||
//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
Size winSize = Size(21,21), int maxLevel = 3,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags = 0, double minEigThreshold = 1e-4 );
|
||||
|
||||
//! computes dense optical flow using Farneback algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
|
||||
double pyr_scale, int levels, int winsize,
|
||||
int iterations, int poly_n, double poly_sigma,
|
||||
int flags );
|
||||
|
||||
//! estimates the best-fit Euqcidean, similarity, affine or perspective transformation
|
||||
// that maps one 2D point set to another or one image to another.
|
||||
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
|
||||
|
||||
//! estimates the best-fit Translation, Euclidean, Affine or Perspective Transformation
|
||||
// with respect to Enhanced Correlation Coefficient criterion that maps one image to
|
||||
// another (area-based alignment)
|
||||
//
|
||||
// see reference:
|
||||
// Evangelidis, G. E., Psarakis, E.Z., Parametric Image Alignment using
|
||||
// Enhanced Correlation Coefficient Maximization, PAMI, 30(8), 2008
|
||||
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
|
||||
InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001));
|
||||
|
||||
|
||||
//! computes dense optical flow using Simple Flow algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray flow,
|
||||
int layers, int averaging_block_size, int max_flow);
|
||||
|
||||
CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray flow, int layers,
|
||||
int averaging_block_size, int max_flow,
|
||||
double sigma_dist, double sigma_color, int postprocess_window,
|
||||
double sigma_dist_fix, double sigma_color_fix, double occ_thr,
|
||||
int upscale_averaging_radius, double upscale_sigma_dist,
|
||||
double upscale_sigma_color, double speed_up_thr );
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
Kalman filter.
|
||||
@@ -269,14 +147,14 @@ public:
|
||||
//! the default constructor
|
||||
CV_WRAP KalmanFilter();
|
||||
//! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
|
||||
CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
|
||||
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
//! re-initializes Kalman filter. The previous content is destroyed.
|
||||
void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
|
||||
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
//! computes predicted state
|
||||
CV_WRAP const Mat& predict(const Mat& control=Mat());
|
||||
CV_WRAP const Mat& predict( const Mat& control = Mat() );
|
||||
//! updates the predicted state from the measurement
|
||||
CV_WRAP const Mat& correct(const Mat& measurement);
|
||||
CV_WRAP const Mat& correct( const Mat& measurement );
|
||||
|
||||
Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
@@ -297,89 +175,12 @@ public:
|
||||
Mat temp5;
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
OPTFLOW_USE_INITIAL_FLOW = CV_LKFLOW_INITIAL_GUESSES,
|
||||
OPTFLOW_LK_GET_MIN_EIGENVALS = CV_LKFLOW_GET_MIN_EIGENVALS,
|
||||
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
||||
};
|
||||
|
||||
//! constructs a pyramid which can be used as input for calcOpticalFlowPyrLK
|
||||
CV_EXPORTS_W int buildOpticalFlowPyramid(InputArray img, OutputArrayOfArrays pyramid,
|
||||
Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT,
|
||||
bool tryReuseInputImage = true);
|
||||
|
||||
//! computes sparse optical flow using multi-scale Lucas-Kanade algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
Size winSize=Size(21,21), int maxLevel=3,
|
||||
TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags=0, double minEigThreshold=1e-4);
|
||||
|
||||
//! computes dense optical flow using Farneback algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next,
|
||||
InputOutputArray flow, double pyr_scale, int levels, int winsize,
|
||||
int iterations, int poly_n, double poly_sigma, int flags );
|
||||
|
||||
//! estimates the best-fit Euqcidean, similarity, affine or perspective transformation
|
||||
// that maps one 2D point set to another or one image to another.
|
||||
CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst,
|
||||
bool fullAffine);
|
||||
|
||||
enum
|
||||
{
|
||||
MOTION_TRANSLATION=0,
|
||||
MOTION_EUCLIDEAN=1,
|
||||
MOTION_AFFINE=2,
|
||||
MOTION_HOMOGRAPHY=3
|
||||
};
|
||||
|
||||
//! estimates the best-fit Translation, Euclidean, Affine or Perspective Transformation
|
||||
// with respect to Enhanced Correlation Coefficient criterion that maps one image to
|
||||
// another (area-based alignment)
|
||||
//
|
||||
// see reference:
|
||||
// Evangelidis, G. E., Psarakis, E.Z., Parametric Image Alignment using
|
||||
// Enhanced Correlation Coefficient Maximization, PAMI, 30(8), 2008
|
||||
|
||||
CV_EXPORTS_W double findTransformECC(InputArray templateImage,
|
||||
InputArray inputImage,
|
||||
InputOutputArray warpMatrix,
|
||||
int motionType=MOTION_AFFINE,
|
||||
TermCriteria criteria=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001));
|
||||
|
||||
|
||||
//! computes dense optical flow using Simple Flow algorithm
|
||||
CV_EXPORTS_W void calcOpticalFlowSF(InputArray from,
|
||||
InputArray to,
|
||||
OutputArray flow,
|
||||
int layers,
|
||||
int averaging_block_size,
|
||||
int max_flow);
|
||||
|
||||
CV_EXPORTS_W void calcOpticalFlowSF(InputArray from,
|
||||
InputArray to,
|
||||
OutputArray flow,
|
||||
int layers,
|
||||
int averaging_block_size,
|
||||
int max_flow,
|
||||
double sigma_dist,
|
||||
double sigma_color,
|
||||
int postprocess_window,
|
||||
double sigma_dist_fix,
|
||||
double sigma_color_fix,
|
||||
double occ_thr,
|
||||
int upscale_averaging_radius,
|
||||
double upscale_sigma_dist,
|
||||
double upscale_sigma_color,
|
||||
double speed_up_thr);
|
||||
|
||||
class CV_EXPORTS DenseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow) = 0;
|
||||
virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
|
||||
virtual void collectGarbage() = 0;
|
||||
};
|
||||
|
||||
@@ -390,8 +191,6 @@ public:
|
||||
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
CV_EXPORTS Ptr<DenseOpticalFlow> createOptFlow_DualTVL1();
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
} // cv
|
||||
|
||||
#endif
|
||||
|
227
modules/video/include/opencv2/video/tracking_c.h
Normal file
227
modules/video/include/opencv2/video/tracking_c.h
Normal file
@@ -0,0 +1,227 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_TRACKING_C_H__
|
||||
#define __OPENCV_TRACKING_C_H__
|
||||
|
||||
#include "opencv2/imgproc/types_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/****************************************************************************************\
|
||||
* Motion Analysis *
|
||||
\****************************************************************************************/
|
||||
|
||||
/************************************ optical flow ***************************************/
|
||||
|
||||
#define CV_LKFLOW_PYR_A_READY 1
|
||||
#define CV_LKFLOW_PYR_B_READY 2
|
||||
#define CV_LKFLOW_INITIAL_GUESSES 4
|
||||
#define CV_LKFLOW_GET_MIN_EIGENVALS 8
|
||||
|
||||
/* It is Lucas & Kanade method, modified to use pyramids.
|
||||
Also it does several iterations to get optical flow for
|
||||
every point at every pyramid level.
|
||||
Calculates optical flow between two images for certain set of points (i.e.
|
||||
it is a "sparse" optical flow, which is opposite to the previous 3 methods) */
|
||||
CVAPI(void) cvCalcOpticalFlowPyrLK( const CvArr* prev, const CvArr* curr,
|
||||
CvArr* prev_pyr, CvArr* curr_pyr,
|
||||
const CvPoint2D32f* prev_features,
|
||||
CvPoint2D32f* curr_features,
|
||||
int count,
|
||||
CvSize win_size,
|
||||
int level,
|
||||
char* status,
|
||||
float* track_error,
|
||||
CvTermCriteria criteria,
|
||||
int flags );
|
||||
|
||||
|
||||
/* Modification of a previous sparse optical flow algorithm to calculate
|
||||
affine flow */
|
||||
CVAPI(void) cvCalcAffineFlowPyrLK( const CvArr* prev, const CvArr* curr,
|
||||
CvArr* prev_pyr, CvArr* curr_pyr,
|
||||
const CvPoint2D32f* prev_features,
|
||||
CvPoint2D32f* curr_features,
|
||||
float* matrices, int count,
|
||||
CvSize win_size, int level,
|
||||
char* status, float* track_error,
|
||||
CvTermCriteria criteria, int flags );
|
||||
|
||||
/* Estimate rigid transformation between 2 images or 2 point sets */
|
||||
CVAPI(int) cvEstimateRigidTransform( const CvArr* A, const CvArr* B,
|
||||
CvMat* M, int full_affine );
|
||||
|
||||
/* Estimate optical flow for each pixel using the two-frame G. Farneback algorithm */
|
||||
CVAPI(void) cvCalcOpticalFlowFarneback( const CvArr* prev, const CvArr* next,
|
||||
CvArr* flow, double pyr_scale, int levels,
|
||||
int winsize, int iterations, int poly_n,
|
||||
double poly_sigma, int flags );
|
||||
|
||||
/********************************* motion templates *************************************/
|
||||
|
||||
/****************************************************************************************\
|
||||
* All the motion template functions work only with single channel images. *
|
||||
* Silhouette image must have depth IPL_DEPTH_8U or IPL_DEPTH_8S *
|
||||
* Motion history image must have depth IPL_DEPTH_32F, *
|
||||
* Gradient mask - IPL_DEPTH_8U or IPL_DEPTH_8S, *
|
||||
* Motion orientation image - IPL_DEPTH_32F *
|
||||
* Segmentation mask - IPL_DEPTH_32F *
|
||||
* All the angles are in degrees, all the times are in milliseconds *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Updates motion history image given motion silhouette */
|
||||
CVAPI(void) cvUpdateMotionHistory( const CvArr* silhouette, CvArr* mhi,
|
||||
double timestamp, double duration );
|
||||
|
||||
/* Calculates gradient of the motion history image and fills
|
||||
a mask indicating where the gradient is valid */
|
||||
CVAPI(void) cvCalcMotionGradient( const CvArr* mhi, CvArr* mask, CvArr* orientation,
|
||||
double delta1, double delta2,
|
||||
int aperture_size CV_DEFAULT(3));
|
||||
|
||||
/* Calculates average motion direction within a selected motion region
|
||||
(region can be selected by setting ROIs and/or by composing a valid gradient mask
|
||||
with the region mask) */
|
||||
CVAPI(double) cvCalcGlobalOrientation( const CvArr* orientation, const CvArr* mask,
|
||||
const CvArr* mhi, double timestamp,
|
||||
double duration );
|
||||
|
||||
/* Splits a motion history image into a few parts corresponding to separate independent motions
|
||||
(e.g. left hand, right hand) */
|
||||
CVAPI(CvSeq*) cvSegmentMotion( const CvArr* mhi, CvArr* seg_mask,
|
||||
CvMemStorage* storage,
|
||||
double timestamp, double seg_thresh );
|
||||
|
||||
/****************************************************************************************\
|
||||
* Tracking *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* Implements CAMSHIFT algorithm - determines object position, size and orientation
|
||||
from the object histogram back project (extension of meanshift) */
|
||||
CVAPI(int) cvCamShift( const CvArr* prob_image, CvRect window,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp,
|
||||
CvBox2D* box CV_DEFAULT(NULL) );
|
||||
|
||||
/* Implements MeanShift algorithm - determines object position
|
||||
from the object histogram back project */
|
||||
CVAPI(int) cvMeanShift( const CvArr* prob_image, CvRect window,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp );
|
||||
|
||||
/*
|
||||
standard Kalman filter (in G. Welch' and G. Bishop's notation):
|
||||
|
||||
x(k)=A*x(k-1)+B*u(k)+w(k) p(w)~N(0,Q)
|
||||
z(k)=H*x(k)+v(k), p(v)~N(0,R)
|
||||
*/
|
||||
typedef struct CvKalman
|
||||
{
|
||||
int MP; /* number of measurement vector dimensions */
|
||||
int DP; /* number of state vector dimensions */
|
||||
int CP; /* number of control vector dimensions */
|
||||
|
||||
/* backward compatibility fields */
|
||||
#if 1
|
||||
float* PosterState; /* =state_pre->data.fl */
|
||||
float* PriorState; /* =state_post->data.fl */
|
||||
float* DynamMatr; /* =transition_matrix->data.fl */
|
||||
float* MeasurementMatr; /* =measurement_matrix->data.fl */
|
||||
float* MNCovariance; /* =measurement_noise_cov->data.fl */
|
||||
float* PNCovariance; /* =process_noise_cov->data.fl */
|
||||
float* KalmGainMatr; /* =gain->data.fl */
|
||||
float* PriorErrorCovariance;/* =error_cov_pre->data.fl */
|
||||
float* PosterErrorCovariance;/* =error_cov_post->data.fl */
|
||||
float* Temp1; /* temp1->data.fl */
|
||||
float* Temp2; /* temp2->data.fl */
|
||||
#endif
|
||||
|
||||
CvMat* state_pre; /* predicted state (x'(k)):
|
||||
x(k)=A*x(k-1)+B*u(k) */
|
||||
CvMat* state_post; /* corrected state (x(k)):
|
||||
x(k)=x'(k)+K(k)*(z(k)-H*x'(k)) */
|
||||
CvMat* transition_matrix; /* state transition matrix (A) */
|
||||
CvMat* control_matrix; /* control matrix (B)
|
||||
(it is not used if there is no control)*/
|
||||
CvMat* measurement_matrix; /* measurement matrix (H) */
|
||||
CvMat* process_noise_cov; /* process noise covariance matrix (Q) */
|
||||
CvMat* measurement_noise_cov; /* measurement noise covariance matrix (R) */
|
||||
CvMat* error_cov_pre; /* priori error estimate covariance matrix (P'(k)):
|
||||
P'(k)=A*P(k-1)*At + Q)*/
|
||||
CvMat* gain; /* Kalman gain matrix (K(k)):
|
||||
K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)*/
|
||||
CvMat* error_cov_post; /* posteriori error estimate covariance matrix (P(k)):
|
||||
P(k)=(I-K(k)*H)*P'(k) */
|
||||
CvMat* temp1; /* temporary matrices */
|
||||
CvMat* temp2;
|
||||
CvMat* temp3;
|
||||
CvMat* temp4;
|
||||
CvMat* temp5;
|
||||
} CvKalman;
|
||||
|
||||
/* Creates Kalman filter and sets A, B, Q, R and state to some initial values */
|
||||
CVAPI(CvKalman*) cvCreateKalman( int dynam_params, int measure_params,
|
||||
int control_params CV_DEFAULT(0));
|
||||
|
||||
/* Releases Kalman filter state */
|
||||
CVAPI(void) cvReleaseKalman( CvKalman** kalman);
|
||||
|
||||
/* Updates Kalman filter by time (predicts future state of the system) */
|
||||
CVAPI(const CvMat*) cvKalmanPredict( CvKalman* kalman,
|
||||
const CvMat* control CV_DEFAULT(NULL));
|
||||
|
||||
/* Updates Kalman filter by measurement
|
||||
(corrects state of the system and internal matrices) */
|
||||
CVAPI(const CvMat*) cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement );
|
||||
|
||||
#define cvKalmanUpdateByTime cvKalmanPredict
|
||||
#define cvKalmanUpdateByMeasurement cvKalmanCorrect
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
||||
|
||||
#endif // __OPENCV_TRACKING_C_H__
|
Reference in New Issue
Block a user