remove dead code
This commit is contained in:
parent
d4d47b1e58
commit
19236b6e43
@ -85,13 +85,6 @@ sft::Octave::~Octave(){}
|
|||||||
bool sft::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
bool sft::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
||||||
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
||||||
{
|
{
|
||||||
|
|
||||||
// std::cout << "WARNING: sampleIdx " << sampleIdx << std::endl;
|
|
||||||
// std::cout << "WARNING: trainData " << _trainData << std::endl;
|
|
||||||
// std::cout << "WARNING: _responses " << _responses << std::endl;
|
|
||||||
// std::cout << "WARNING: varIdx" << varIdx << std::endl;
|
|
||||||
// std::cout << "WARNING: varType" << varType << std::endl;
|
|
||||||
|
|
||||||
bool update = false;
|
bool update = false;
|
||||||
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
||||||
update);
|
update);
|
||||||
@ -119,10 +112,6 @@ void sft::Octave::setRejectThresholds(cv::Mat& thresholds)
|
|||||||
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
|
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
|
||||||
}
|
}
|
||||||
|
|
||||||
// std::cout << "WARNING: responses " << responses << std::endl;
|
|
||||||
// std::cout << "WARNING: desisions " << desisions << std::endl;
|
|
||||||
// std::cout << "WARNING: ppmask " << ppmask << std::endl;
|
|
||||||
|
|
||||||
int weaks = weak->total;
|
int weaks = weak->total;
|
||||||
thresholds.create(1, weaks, CV_64FC1);
|
thresholds.create(1, weaks, CV_64FC1);
|
||||||
double* thptr = thresholds.ptr<double>(0);
|
double* thptr = thresholds.ptr<double>(0);
|
||||||
@ -144,10 +133,7 @@ void sft::Octave::setRejectThresholds(cv::Mat& thresholds)
|
|||||||
double mintrace = 0.;
|
double mintrace = 0.;
|
||||||
cv::minMaxLoc(traces.row(w), &mintrace);
|
cv::minMaxLoc(traces.row(w), &mintrace);
|
||||||
thptr[w] = mintrace;
|
thptr[w] = mintrace;
|
||||||
// std::cout << "mintrace " << mintrace << std::endl << traces.colRange(0, npositives).rowRange(w, w + 1) << std::endl << std::endl << std::endl << std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::cout << "WARNING: thresholds " << thresholds << std::endl;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
@ -211,8 +197,6 @@ public:
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
// ToDo: parallelize it, fix curring
|
|
||||||
// ToDo: sunch model size and shrinced model size usage/ Now model size mean already shrinked model
|
|
||||||
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& pool)
|
void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& pool)
|
||||||
{
|
{
|
||||||
Preprocessor prepocessor(shrinkage);
|
Preprocessor prepocessor(shrinkage);
|
||||||
@ -227,8 +211,6 @@ void sft::Octave::processPositives(const Dataset& dataset, const FeaturePool& po
|
|||||||
{
|
{
|
||||||
const string& curr = *it;
|
const string& curr = *it;
|
||||||
|
|
||||||
// dprintf("Process candidate positive image %s\n", curr.c_str());
|
|
||||||
|
|
||||||
cv::Mat sample = cv::imread(curr);
|
cv::Mat sample = cv::imread(curr);
|
||||||
|
|
||||||
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
||||||
@ -266,9 +248,6 @@ void sft::Octave::generateNegatives(const Dataset& dataset)
|
|||||||
{
|
{
|
||||||
int curr = iRand(idxEng);
|
int curr = iRand(idxEng);
|
||||||
|
|
||||||
// dprintf("View %d-th sample\n", curr);
|
|
||||||
// dprintf("Process %s\n", dataset.neg[curr].c_str());
|
|
||||||
|
|
||||||
Mat frame = cv::imread(dataset.neg[curr]);
|
Mat frame = cv::imread(dataset.neg[curr]);
|
||||||
|
|
||||||
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
||||||
@ -352,7 +331,7 @@ void sft::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nf
|
|||||||
|
|
||||||
fs << "leafValues" << "[";
|
fs << "leafValues" << "[";
|
||||||
for (int ni = 0; ni < -leafValIdx; ni++)
|
for (int ni = 0; ni < -leafValIdx; ni++)
|
||||||
fs << leafs[ni];//( (!th) ? leafs[ni] : (sgn(leafs[ni]) * *th));
|
fs << leafs[ni];
|
||||||
fs << "]";
|
fs << "]";
|
||||||
|
|
||||||
|
|
||||||
@ -447,19 +426,6 @@ bool sft::Octave::train(const Dataset& dataset, const FeaturePool& pool, int wea
|
|||||||
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
|
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
|
||||||
if (!ok)
|
if (!ok)
|
||||||
std::cout << "ERROR: tree can not be trained " << std::endl;
|
std::cout << "ERROR: tree can not be trained " << std::endl;
|
||||||
|
|
||||||
#if defined SELF_TEST
|
|
||||||
cv::Mat a(1, nfeatures, CV_32FC1);
|
|
||||||
cv::Mat votes(1, cvSliceLength( CV_WHOLE_SEQ, weak ), CV_32FC1, cv::Scalar::all(0));
|
|
||||||
|
|
||||||
// std::cout << a.cols << " " << a.rows << " !!!!!!!!!!! " << data->var_all << std::endl;
|
|
||||||
for (int si = 0; si < nsamples; ++si)
|
|
||||||
{
|
|
||||||
// trainData.col(si).copyTo(a.reshape(0,trainData.rows));
|
|
||||||
float desision = predict(trainData.col(si), votes, false, true);
|
|
||||||
// std::cout << "desision " << desision << " class " << responses.at<float>(si, 0) << votes <<std::endl;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
return ok;
|
return ok;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user