empty cascade
This commit is contained in:
parent
4881205bae
commit
1917366528
@ -40,221 +40,221 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <icf.hpp>
|
||||
#include <opencv2/gpu/device/saturate_cast.hpp>
|
||||
#include <stdio.h>
|
||||
#include <float.h>
|
||||
// #include <icf.hpp>
|
||||
// #include <opencv2/gpu/device/saturate_cast.hpp>
|
||||
// #include <stdio.h>
|
||||
// #include <float.h>
|
||||
|
||||
//#define LOG_CUDA_CASCADE
|
||||
// //#define LOG_CUDA_CASCADE
|
||||
|
||||
#if defined LOG_CUDA_CASCADE
|
||||
# define dprintf(format, ...) \
|
||||
do { printf(format, __VA_ARGS__); } while (0)
|
||||
#else
|
||||
# define dprintf(format, ...)
|
||||
#endif
|
||||
// #if defined LOG_CUDA_CASCADE
|
||||
// # define dprintf(format, ...) \
|
||||
// do { printf(format, __VA_ARGS__); } while (0)
|
||||
// #else
|
||||
// # define dprintf(format, ...)
|
||||
// #endif
|
||||
|
||||
namespace cv { namespace gpu { namespace device {
|
||||
// namespace cv { namespace gpu { namespace device {
|
||||
|
||||
namespace icf {
|
||||
// namespace icf {
|
||||
|
||||
enum {
|
||||
HOG_BINS = 6,
|
||||
HOG_LUV_BINS = 10,
|
||||
WIDTH = 640,
|
||||
HEIGHT = 480,
|
||||
GREY_OFFSET = HEIGHT * HOG_LUV_BINS
|
||||
};
|
||||
// enum {
|
||||
// HOG_BINS = 6,
|
||||
// HOG_LUV_BINS = 10,
|
||||
// WIDTH = 640,
|
||||
// HEIGHT = 480,
|
||||
// GREY_OFFSET = HEIGHT * HOG_LUV_BINS
|
||||
// };
|
||||
|
||||
__global__ void magToHist(const uchar* __restrict__ mag,
|
||||
const float* __restrict__ angle, const int angPitch,
|
||||
uchar* __restrict__ hog, const int hogPitch)
|
||||
{
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
// __global__ void magToHist(const uchar* __restrict__ mag,
|
||||
// const float* __restrict__ angle, const int angPitch,
|
||||
// uchar* __restrict__ hog, const int hogPitch)
|
||||
// {
|
||||
// const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
// const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
const int bin = (int)(angle[y * angPitch + x]);
|
||||
const uchar val = mag[y * angPitch + x];
|
||||
// const int bin = (int)(angle[y * angPitch + x]);
|
||||
// const uchar val = mag[y * angPitch + x];
|
||||
|
||||
hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
|
||||
}
|
||||
// hog[((HEIGHT * bin) + y) * hogPitch + x] = val;
|
||||
// }
|
||||
|
||||
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
|
||||
{
|
||||
const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
|
||||
uchar* hog = (uchar*)hogluv.ptr();
|
||||
const float* angle = (const float*)nangle.ptr();
|
||||
// void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle)
|
||||
// {
|
||||
// const uchar* mag = (const uchar*)hogluv.ptr(HEIGHT * HOG_BINS);
|
||||
// uchar* hog = (uchar*)hogluv.ptr();
|
||||
// const float* angle = (const float*)nangle.ptr();
|
||||
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(WIDTH / 32, HEIGHT / 8);
|
||||
// dim3 block(32, 8);
|
||||
// dim3 grid(WIDTH / 32, HEIGHT / 8);
|
||||
|
||||
magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
// magToHist<<<grid, block>>>(mag, angle, nangle.step / sizeof(float), hog, hogluv.step);
|
||||
// cudaSafeCall( cudaGetLastError() );
|
||||
// cudaSafeCall( cudaDeviceSynchronize() );
|
||||
// }
|
||||
// }
|
||||
|
||||
__global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
|
||||
PtrStepSz<uchar4> objects)
|
||||
{
|
||||
cascade.detectAt(hogluv, pitch, objects);
|
||||
}
|
||||
// __global__ void detect(const cv::gpu::icf::Cascade cascade, const int* __restrict__ hogluv, const int pitch,
|
||||
// PtrStepSz<uchar4> objects)
|
||||
// {
|
||||
// cascade.detectAt(hogluv, pitch, objects);
|
||||
// }
|
||||
|
||||
}
|
||||
// }
|
||||
|
||||
float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
|
||||
const int channel, const float threshold) const
|
||||
{
|
||||
dprintf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
|
||||
dprintf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
|
||||
// float __device icf::Cascade::rescale(const icf::Level& level, uchar4& scaledRect,
|
||||
// const int channel, const float threshold) const
|
||||
// {
|
||||
// dprintf("feature %d box %d %d %d %d\n", channel, scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w);
|
||||
// dprintf("rescale: %f [%f %f]\n",level.relScale, level.scaling[0], level.scaling[1]);
|
||||
|
||||
float relScale = level.relScale;
|
||||
float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
|
||||
// float relScale = level.relScale;
|
||||
// float farea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
|
||||
|
||||
// rescale
|
||||
scaledRect.x = __float2int_rn(relScale * scaledRect.x);
|
||||
scaledRect.y = __float2int_rn(relScale * scaledRect.y);
|
||||
scaledRect.z = __float2int_rn(relScale * scaledRect.z);
|
||||
scaledRect.w = __float2int_rn(relScale * scaledRect.w);
|
||||
// // rescale
|
||||
// scaledRect.x = __float2int_rn(relScale * scaledRect.x);
|
||||
// scaledRect.y = __float2int_rn(relScale * scaledRect.y);
|
||||
// scaledRect.z = __float2int_rn(relScale * scaledRect.z);
|
||||
// scaledRect.w = __float2int_rn(relScale * scaledRect.w);
|
||||
|
||||
float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
|
||||
// float sarea = (scaledRect.z - scaledRect.x) * (scaledRect.w - scaledRect.y);
|
||||
|
||||
|
||||
float approx = 1.f;
|
||||
if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
|
||||
{
|
||||
const float expected_new_area = farea * relScale * relScale;
|
||||
approx = expected_new_area / sarea;
|
||||
}
|
||||
// float approx = 1.f;
|
||||
// if (fabs(farea - 0.f) > FLT_EPSILON && fabs(farea - 0.f) > FLT_EPSILON)
|
||||
// {
|
||||
// const float expected_new_area = farea * relScale * relScale;
|
||||
// approx = expected_new_area / sarea;
|
||||
// }
|
||||
|
||||
dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
|
||||
scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
|
||||
// dprintf("new rect: %d box %d %d %d %d rel areas %f %f\n", channel,
|
||||
// scaledRect.x, scaledRect.y, scaledRect.z, scaledRect.w, farea * relScale * relScale, sarea);
|
||||
|
||||
// compensation areas rounding
|
||||
float rootThreshold = threshold / approx;
|
||||
// printf(" approx %f\n", rootThreshold);
|
||||
rootThreshold *= level.scaling[(int)(channel > 6)];
|
||||
// // compensation areas rounding
|
||||
// float rootThreshold = threshold / approx;
|
||||
// // printf(" approx %f\n", rootThreshold);
|
||||
// rootThreshold *= level.scaling[(int)(channel > 6)];
|
||||
|
||||
dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
|
||||
// dprintf("approximation %f %f -> %f %f\n", approx, threshold, rootThreshold, level.scaling[(int)(channel > 6)]);
|
||||
|
||||
return rootThreshold;
|
||||
}
|
||||
// return rootThreshold;
|
||||
// }
|
||||
|
||||
typedef unsigned char uchar;
|
||||
float __device get(const int* __restrict__ hogluv, const int pitch,
|
||||
const int x, const int y, int channel, uchar4 area)
|
||||
{
|
||||
dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
|
||||
dprintf("get for channel %d\n", channel);
|
||||
dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
|
||||
x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
|
||||
x + area.x, y + area.w);
|
||||
dprintf("at point %d %d with offset %d\n", x, y, 0);
|
||||
// typedef unsigned char uchar;
|
||||
// float __device get(const int* __restrict__ hogluv, const int pitch,
|
||||
// const int x, const int y, int channel, uchar4 area)
|
||||
// {
|
||||
// dprintf("feature box %d %d %d %d ", area.x, area.y, area.z, area.w);
|
||||
// dprintf("get for channel %d\n", channel);
|
||||
// dprintf("extract feature for: [%d %d] [%d %d] [%d %d] [%d %d]\n",
|
||||
// x + area.x, y + area.y, x + area.z, y + area.y, x + area.z,y + area.w,
|
||||
// x + area.x, y + area.w);
|
||||
// dprintf("at point %d %d with offset %d\n", x, y, 0);
|
||||
|
||||
const int* curr = hogluv + ((channel * 121) + y) * pitch;
|
||||
// const int* curr = hogluv + ((channel * 121) + y) * pitch;
|
||||
|
||||
int a = curr[area.y * pitch + x + area.x];
|
||||
int b = curr[area.y * pitch + x + area.z];
|
||||
int c = curr[area.w * pitch + x + area.z];
|
||||
int d = curr[area.w * pitch + x + area.x];
|
||||
// int a = curr[area.y * pitch + x + area.x];
|
||||
// int b = curr[area.y * pitch + x + area.z];
|
||||
// int c = curr[area.w * pitch + x + area.z];
|
||||
// int d = curr[area.w * pitch + x + area.x];
|
||||
|
||||
dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
|
||||
// dprintf(" retruved integral values: %d %d %d %d\n", a, b, c, d);
|
||||
|
||||
return (a - b + c - d);
|
||||
}
|
||||
// return (a - b + c - d);
|
||||
// }
|
||||
|
||||
|
||||
void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
|
||||
PtrStepSz<uchar4>& objects) const
|
||||
{
|
||||
const icf::Level* lls = (const icf::Level*)levels.ptr();
|
||||
// void __device icf::Cascade::detectAt(const int* __restrict__ hogluv, const int pitch,
|
||||
// PtrStepSz<uchar4>& objects) const
|
||||
// {
|
||||
// const icf::Level* lls = (const icf::Level*)levels.ptr();
|
||||
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
// if (x > 0 || y > 0) return;
|
||||
// const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
// const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
// // if (x > 0 || y > 0) return;
|
||||
|
||||
Level level = lls[blockIdx.z];
|
||||
if (x >= level.workRect.x || y >= level.workRect.y) return;
|
||||
// Level level = lls[blockIdx.z];
|
||||
// if (x >= level.workRect.x || y >= level.workRect.y) return;
|
||||
|
||||
dprintf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
|
||||
level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
|
||||
// dprintf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
|
||||
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
|
||||
|
||||
const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
|
||||
// printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
|
||||
// octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
|
||||
// const Octave octave = ((const Octave*)octaves.ptr())[level.octave];
|
||||
// // printf("Octave: %d %d %d (%d %d) %f\n", octave.index, octave.stages,
|
||||
// // octave.shrinkage, octave.size.x, octave.size.y, octave.scale);
|
||||
|
||||
const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
|
||||
// const int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages;
|
||||
|
||||
float detectionScore = 0.f;
|
||||
// float detectionScore = 0.f;
|
||||
|
||||
int st = stBegin;
|
||||
for(; st < stEnd; ++st)
|
||||
{
|
||||
const float stage = stages(0, st);
|
||||
dprintf("Stage: %f\n", stage);
|
||||
{
|
||||
const int nId = st * 3;
|
||||
// int st = stBegin;
|
||||
// for(; st < stEnd; ++st)
|
||||
// {
|
||||
// const float stage = stages(0, st);
|
||||
// dprintf("Stage: %f\n", stage);
|
||||
// {
|
||||
// const int nId = st * 3;
|
||||
|
||||
// work with root node
|
||||
const Node node = ((const Node*)nodes.ptr())[nId];
|
||||
// // work with root node
|
||||
// const Node node = ((const Node*)nodes.ptr())[nId];
|
||||
|
||||
dprintf("Node: %d %f\n", node.feature, node.threshold);
|
||||
// dprintf("Node: %d %f\n", node.feature, node.threshold);
|
||||
|
||||
const Feature feature = ((const Feature*)features.ptr())[node.feature];
|
||||
// const Feature feature = ((const Feature*)features.ptr())[node.feature];
|
||||
|
||||
uchar4 scaledRect = feature.rect;
|
||||
float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
|
||||
// uchar4 scaledRect = feature.rect;
|
||||
// float threshold = rescale(level, scaledRect, feature.channel, node.threshold);
|
||||
|
||||
float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
|
||||
// float sum = get(hogluv,pitch, x, y, feature.channel, scaledRect);
|
||||
|
||||
dprintf("root feature %d %f\n",feature.channel, sum);
|
||||
// dprintf("root feature %d %f\n",feature.channel, sum);
|
||||
|
||||
int next = 1 + (int)(sum >= threshold);
|
||||
// int next = 1 + (int)(sum >= threshold);
|
||||
|
||||
dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
|
||||
// dprintf("go: %d (%f >= %f)\n\n" ,next, sum, threshold);
|
||||
|
||||
// leaves
|
||||
const Node leaf = ((const Node*)nodes.ptr())[nId + next];
|
||||
const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
|
||||
// // leaves
|
||||
// const Node leaf = ((const Node*)nodes.ptr())[nId + next];
|
||||
// const Feature fLeaf = ((const Feature*)features.ptr())[leaf.feature];
|
||||
|
||||
scaledRect = fLeaf.rect;
|
||||
threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
|
||||
sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
|
||||
// scaledRect = fLeaf.rect;
|
||||
// threshold = rescale(level, scaledRect, fLeaf.channel, leaf.threshold);
|
||||
// sum = get(hogluv, pitch, x, y, fLeaf.channel, scaledRect);
|
||||
|
||||
const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
|
||||
float impact = leaves(0, (st * 4) + lShift);
|
||||
// const int lShift = (next - 1) * 2 + (int)(sum >= threshold);
|
||||
// float impact = leaves(0, (st * 4) + lShift);
|
||||
|
||||
detectionScore += impact;
|
||||
// detectionScore += impact;
|
||||
|
||||
dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
|
||||
dprintf("extracted stage:\n");
|
||||
dprintf("ct %f\n", stage);
|
||||
dprintf("computed score %f\n\n", detectionScore);
|
||||
dprintf("\n\n");
|
||||
}
|
||||
// dprintf("decided: %d (%f >= %f) %d %f\n\n" ,next, sum, threshold, lShift, impact);
|
||||
// dprintf("extracted stage:\n");
|
||||
// dprintf("ct %f\n", stage);
|
||||
// dprintf("computed score %f\n\n", detectionScore);
|
||||
// dprintf("\n\n");
|
||||
// }
|
||||
|
||||
if (detectionScore <= stage || st - stBegin == 100) break;
|
||||
}
|
||||
// if (detectionScore <= stage || st - stBegin == 100) break;
|
||||
// }
|
||||
|
||||
dprintf("x %d y %d: %d\n", x, y, st - stBegin);
|
||||
// dprintf("x %d y %d: %d\n", x, y, st - stBegin);
|
||||
|
||||
if (st == stEnd)
|
||||
{
|
||||
uchar4 a;
|
||||
a.x = level.workRect.x;
|
||||
a.y = level.workRect.y;
|
||||
objects(0, threadIdx.x) = a;
|
||||
}
|
||||
}
|
||||
// if (st == stEnd)
|
||||
// {
|
||||
// uchar4 a;
|
||||
// a.x = level.workRect.x;
|
||||
// a.y = level.workRect.y;
|
||||
// objects(0, threadIdx.x) = a;
|
||||
// }
|
||||
// }
|
||||
|
||||
void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
|
||||
{
|
||||
dim3 block(32, 8, 1);
|
||||
dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 47);
|
||||
device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
if (!stream)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
// void icf::Cascade::detect(const cv::gpu::PtrStepSzi& hogluv, PtrStepSz<uchar4> objects, cudaStream_t stream) const
|
||||
// {
|
||||
// dim3 block(32, 8, 1);
|
||||
// dim3 grid(ChannelStorage::FRAME_WIDTH / 32, ChannelStorage::FRAME_HEIGHT / 8, 47);
|
||||
// device::detect<<<grid, block, 0, stream>>>(*this, hogluv, hogluv.step / sizeof(int), objects);
|
||||
// cudaSafeCall( cudaGetLastError() );
|
||||
// if (!stream)
|
||||
// cudaSafeCall( cudaDeviceSynchronize() );
|
||||
// }
|
||||
|
||||
}}
|
||||
// }}
|
@ -40,127 +40,127 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <opencv2/gpu/device/common.hpp>
|
||||
// #include <opencv2/gpu/device/common.hpp>
|
||||
|
||||
#ifndef __OPENCV_ICF_HPP__
|
||||
#define __OPENCV_ICF_HPP__
|
||||
// #ifndef __OPENCV_ICF_HPP__
|
||||
// #define __OPENCV_ICF_HPP__
|
||||
|
||||
#if defined __CUDACC__
|
||||
# define __device __device__ __forceinline__
|
||||
#else
|
||||
# define __device
|
||||
#endif
|
||||
// #if defined __CUDACC__
|
||||
// # define __device __device__ __forceinline__
|
||||
// #else
|
||||
// # define __device
|
||||
// #endif
|
||||
|
||||
|
||||
namespace cv { namespace gpu { namespace icf {
|
||||
// namespace cv { namespace gpu { namespace icf {
|
||||
|
||||
using cv::gpu::PtrStepSzb;
|
||||
using cv::gpu::PtrStepSzf;
|
||||
// using cv::gpu::PtrStepSzb;
|
||||
// using cv::gpu::PtrStepSzf;
|
||||
|
||||
typedef unsigned char uchar;
|
||||
// typedef unsigned char uchar;
|
||||
|
||||
struct __align__(16) Octave
|
||||
{
|
||||
ushort index;
|
||||
ushort stages;
|
||||
ushort shrinkage;
|
||||
ushort2 size;
|
||||
float scale;
|
||||
// struct __align__(16) Octave
|
||||
// {
|
||||
// ushort index;
|
||||
// ushort stages;
|
||||
// ushort shrinkage;
|
||||
// ushort2 size;
|
||||
// float scale;
|
||||
|
||||
Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
|
||||
: index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
|
||||
};
|
||||
// Octave(const ushort i, const ushort s, const ushort sh, const ushort2 sz, const float sc)
|
||||
// : index(i), stages(s), shrinkage(sh), size(sz), scale(sc) {}
|
||||
// };
|
||||
|
||||
struct __align__(8) Level //is actually 24 bytes
|
||||
{
|
||||
int octave;
|
||||
// struct __align__(8) Level //is actually 24 bytes
|
||||
// {
|
||||
// int octave;
|
||||
|
||||
// float origScale; //not actually used
|
||||
float relScale;
|
||||
float shrScale; // used for marking detection
|
||||
float scaling[2]; // calculated according to Dollal paper
|
||||
// // float origScale; //not actually used
|
||||
// float relScale;
|
||||
// float shrScale; // used for marking detection
|
||||
// float scaling[2]; // calculated according to Dollal paper
|
||||
|
||||
// for 640x480 we can not get overflow
|
||||
uchar2 workRect;
|
||||
uchar2 objSize;
|
||||
// // for 640x480 we can not get overflow
|
||||
// uchar2 workRect;
|
||||
// uchar2 objSize;
|
||||
|
||||
Level(int idx, const Octave& oct, const float scale, const int w, const int h)
|
||||
: octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
|
||||
{
|
||||
workRect.x = round(w / (float)oct.shrinkage);
|
||||
workRect.y = round(h / (float)oct.shrinkage);
|
||||
// Level(int idx, const Octave& oct, const float scale, const int w, const int h)
|
||||
// : octave(idx), relScale(scale / oct.scale), shrScale (relScale / (float)oct.shrinkage)
|
||||
// {
|
||||
// workRect.x = round(w / (float)oct.shrinkage);
|
||||
// workRect.y = round(h / (float)oct.shrinkage);
|
||||
|
||||
objSize.x = round(oct.size.x * relScale);
|
||||
objSize.y = round(oct.size.y * relScale);
|
||||
}
|
||||
};
|
||||
// objSize.x = round(oct.size.x * relScale);
|
||||
// objSize.y = round(oct.size.y * relScale);
|
||||
// }
|
||||
// };
|
||||
|
||||
struct Cascade
|
||||
{
|
||||
Cascade() {}
|
||||
Cascade(const cv::gpu::PtrStepSzb& octs, const cv::gpu::PtrStepSzf& sts, const cv::gpu::PtrStepSzb& nds,
|
||||
const cv::gpu::PtrStepSzf& lvs, const cv::gpu::PtrStepSzb& fts, const cv::gpu::PtrStepSzb& lls)
|
||||
: octaves(octs), stages(sts), nodes(nds), leaves(lvs), features(fts), levels(lls) {}
|
||||
// struct Cascade
|
||||
// {
|
||||
// Cascade() {}
|
||||
// Cascade(const cv::gpu::PtrStepSzb& octs, const cv::gpu::PtrStepSzf& sts, const cv::gpu::PtrStepSzb& nds,
|
||||
// const cv::gpu::PtrStepSzf& lvs, const cv::gpu::PtrStepSzb& fts, const cv::gpu::PtrStepSzb& lls)
|
||||
// : octaves(octs), stages(sts), nodes(nds), leaves(lvs), features(fts), levels(lls) {}
|
||||
|
||||
void detect(const cv::gpu::PtrStepSzi& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
|
||||
void __device detectAt(const int* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
|
||||
float __device rescale(const icf::Level& level, uchar4& scaledRect,
|
||||
const int channel, const float threshold) const;
|
||||
// void detect(const cv::gpu::PtrStepSzi& hogluv, cv::gpu::PtrStepSz<uchar4> objects, cudaStream_t stream) const;
|
||||
// void __device detectAt(const int* __restrict__ hogluv, const int pitch, PtrStepSz<uchar4>& objects) const;
|
||||
// float __device rescale(const icf::Level& level, uchar4& scaledRect,
|
||||
// const int channel, const float threshold) const;
|
||||
|
||||
PtrStepSzb octaves;
|
||||
PtrStepSzf stages;
|
||||
PtrStepSzb nodes;
|
||||
PtrStepSzf leaves;
|
||||
PtrStepSzb features;
|
||||
// PtrStepSzb octaves;
|
||||
// PtrStepSzf stages;
|
||||
// PtrStepSzb nodes;
|
||||
// PtrStepSzf leaves;
|
||||
// PtrStepSzb features;
|
||||
|
||||
PtrStepSzb levels;
|
||||
// PtrStepSzb levels;
|
||||
|
||||
};
|
||||
// };
|
||||
|
||||
struct ChannelStorage
|
||||
{
|
||||
ChannelStorage(){}
|
||||
ChannelStorage(const cv::gpu::PtrStepSzb& buff, const cv::gpu::PtrStepSzb& shr,
|
||||
const cv::gpu::PtrStepSzb& itg, const int s)
|
||||
: dmem (buff), shrunk(shr), hogluv(itg), shrinkage(s) {}
|
||||
// struct ChannelStorage
|
||||
// {
|
||||
// ChannelStorage(){}
|
||||
// ChannelStorage(const cv::gpu::PtrStepSzb& buff, const cv::gpu::PtrStepSzb& shr,
|
||||
// const cv::gpu::PtrStepSzb& itg, const int s)
|
||||
// : dmem (buff), shrunk(shr), hogluv(itg), shrinkage(s) {}
|
||||
|
||||
void frame(const cv::gpu::PtrStepSz<uchar3>& rgb, cudaStream_t stream){}
|
||||
// void frame(const cv::gpu::PtrStepSz<uchar3>& rgb, cudaStream_t stream){}
|
||||
|
||||
PtrStepSzb dmem;
|
||||
PtrStepSzb shrunk;
|
||||
PtrStepSzb hogluv;
|
||||
// PtrStepSzb dmem;
|
||||
// PtrStepSzb shrunk;
|
||||
// PtrStepSzb hogluv;
|
||||
|
||||
enum
|
||||
{
|
||||
FRAME_WIDTH = 640,
|
||||
FRAME_HEIGHT = 480,
|
||||
TOTAL_SCALES = 55,
|
||||
CLASSIFIERS = 5,
|
||||
ORIG_OBJECT_WIDTH = 64,
|
||||
ORIG_OBJECT_HEIGHT = 128,
|
||||
HOG_BINS = 6,
|
||||
HOG_LUV_BINS = 10
|
||||
};
|
||||
// enum
|
||||
// {
|
||||
// FRAME_WIDTH = 640,
|
||||
// FRAME_HEIGHT = 480,
|
||||
// TOTAL_SCALES = 55,
|
||||
// CLASSIFIERS = 5,
|
||||
// ORIG_OBJECT_WIDTH = 64,
|
||||
// ORIG_OBJECT_HEIGHT = 128,
|
||||
// HOG_BINS = 6,
|
||||
// HOG_LUV_BINS = 10
|
||||
// };
|
||||
|
||||
int shrinkage;
|
||||
static const float magnitudeScaling = 1.f ;// / sqrt(2);
|
||||
};
|
||||
// int shrinkage;
|
||||
// static const float magnitudeScaling = 1.f ;// / sqrt(2);
|
||||
// };
|
||||
|
||||
struct __align__(8) Node
|
||||
{
|
||||
int feature;
|
||||
float threshold;
|
||||
// struct __align__(8) Node
|
||||
// {
|
||||
// int feature;
|
||||
// float threshold;
|
||||
|
||||
Node(const int f, const float t) : feature(f), threshold(t) {}
|
||||
};
|
||||
// Node(const int f, const float t) : feature(f), threshold(t) {}
|
||||
// };
|
||||
|
||||
struct __align__(8) Feature
|
||||
{
|
||||
int channel;
|
||||
uchar4 rect;
|
||||
// struct __align__(8) Feature
|
||||
// {
|
||||
// int channel;
|
||||
// uchar4 rect;
|
||||
|
||||
Feature(const int c, const uchar4 r) : channel(c), rect(r) {}
|
||||
};
|
||||
}}}
|
||||
// Feature(const int c, const uchar4 r) : channel(c), rect(r) {}
|
||||
// };
|
||||
// }}}
|
||||
|
||||
#endif
|
||||
// #endif
|
@ -41,361 +41,365 @@
|
||||
//M*/
|
||||
|
||||
#include <precomp.hpp>
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#if !defined (HAVE_CUDA)
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) { throw_nogpu(); }
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade( const string&, const float, const float) : filds(0) { throw_nogpu(); }
|
||||
|
||||
cv::gpu::SoftCascade::~SoftCascade() { throw_nogpu(); }
|
||||
|
||||
bool cv::gpu::SoftCascade::load( const string&, const float, const float) { throw_nogpu(); }
|
||||
|
||||
bool cv::gpu::SoftCascade::load( const string&, const float, const float) { throw_nogpu(); return false; }
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat&, const GpuMat&, GpuMat&, const int, Stream) { throw_nogpu(); }
|
||||
|
||||
#else
|
||||
|
||||
#include <icf.hpp>
|
||||
// #include <icf.hpp>
|
||||
|
||||
namespace cv { namespace gpu { namespace device {
|
||||
namespace icf {
|
||||
void fillBins(cv::gpu::PtrStepSzb hogluv,const cv::gpu::PtrStepSzf& nangle);
|
||||
}
|
||||
}}}
|
||||
// namespace cv { namespace gpu { namespace device {
|
||||
// namespace icf {
|
||||
// void fillBins(cv::gpu::PtrStepSzb hogluv,const cv::gpu::PtrStepSzf& nangle);
|
||||
// }
|
||||
// }}}
|
||||
|
||||
// namespace {
|
||||
// char *itoa(long i, char* s, int /*dummy_radix*/)
|
||||
// {
|
||||
// sprintf(s, "%ld", i);
|
||||
// return s;
|
||||
// }
|
||||
// }
|
||||
|
||||
struct cv::gpu::SoftCascade::Filds
|
||||
{
|
||||
// scales range
|
||||
float minScale;
|
||||
float maxScale;
|
||||
// // scales range
|
||||
// float minScale;
|
||||
// float maxScale;
|
||||
|
||||
int origObjWidth;
|
||||
int origObjHeight;
|
||||
// int origObjWidth;
|
||||
// int origObjHeight;
|
||||
|
||||
GpuMat octaves;
|
||||
GpuMat stages;
|
||||
GpuMat nodes;
|
||||
GpuMat leaves;
|
||||
GpuMat features;
|
||||
GpuMat levels;
|
||||
// GpuMat octaves;
|
||||
// GpuMat stages;
|
||||
// GpuMat nodes;
|
||||
// GpuMat leaves;
|
||||
// GpuMat features;
|
||||
// GpuMat levels;
|
||||
|
||||
// preallocated buffer 640x480x10 + 640x480
|
||||
GpuMat dmem;
|
||||
// 160x120x10
|
||||
GpuMat shrunk;
|
||||
// 161x121x10
|
||||
GpuMat hogluv;
|
||||
// // preallocated buffer 640x480x10 + 640x480
|
||||
// GpuMat dmem;
|
||||
// // 160x120x10
|
||||
// GpuMat shrunk;
|
||||
// // 161x121x10
|
||||
// GpuMat hogluv;
|
||||
|
||||
// will be removed in final version
|
||||
// temporial mat for cvtColor
|
||||
GpuMat luv;
|
||||
// // will be removed in final version
|
||||
// // temporial mat for cvtColor
|
||||
// GpuMat luv;
|
||||
|
||||
// temporial mat for integrall
|
||||
GpuMat integralBuffer;
|
||||
// // temporial mat for integrall
|
||||
// GpuMat integralBuffer;
|
||||
|
||||
// temp matrix for sobel and cartToPolar
|
||||
GpuMat dfdx, dfdy, angle, mag, nmag, nangle;
|
||||
// // temp matrix for sobel and cartToPolar
|
||||
// GpuMat dfdx, dfdy, angle, mag, nmag, nangle;
|
||||
|
||||
std::vector<float> scales;
|
||||
// std::vector<float> scales;
|
||||
|
||||
icf::Cascade cascade;
|
||||
icf::ChannelStorage storage;
|
||||
// icf::Cascade cascade;
|
||||
// icf::ChannelStorage storage;
|
||||
|
||||
enum { BOOST = 0 };
|
||||
enum
|
||||
{
|
||||
FRAME_WIDTH = 640,
|
||||
FRAME_HEIGHT = 480,
|
||||
TOTAL_SCALES = 55,
|
||||
CLASSIFIERS = 5,
|
||||
ORIG_OBJECT_WIDTH = 64,
|
||||
ORIG_OBJECT_HEIGHT = 128,
|
||||
HOG_BINS = 6,
|
||||
HOG_LUV_BINS = 10
|
||||
};
|
||||
// enum { BOOST = 0 };
|
||||
// enum
|
||||
// {
|
||||
// FRAME_WIDTH = 640,
|
||||
// FRAME_HEIGHT = 480,
|
||||
// TOTAL_SCALES = 55,
|
||||
// CLASSIFIERS = 5,
|
||||
// ORIG_OBJECT_WIDTH = 64,
|
||||
// ORIG_OBJECT_HEIGHT = 128,
|
||||
// HOG_BINS = 6,
|
||||
// HOG_LUV_BINS = 10
|
||||
// };
|
||||
|
||||
bool fill(const FileNode &root, const float mins, const float maxs);
|
||||
void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const
|
||||
{
|
||||
cascade.detect(hogluv, objects, stream);
|
||||
}
|
||||
// bool fill(const FileNode &root, const float mins, const float maxs);
|
||||
// void detect(cv::gpu::GpuMat objects, cudaStream_t stream) const
|
||||
// {
|
||||
// cascade.detect(hogluv, objects, stream);
|
||||
// }
|
||||
|
||||
private:
|
||||
void calcLevels(const std::vector<icf::Octave>& octs,
|
||||
int frameW, int frameH, int nscales);
|
||||
// private:
|
||||
// void calcLevels(const std::vector<icf::Octave>& octs,
|
||||
// int frameW, int frameH, int nscales);
|
||||
|
||||
typedef std::vector<icf::Octave>::const_iterator octIt_t;
|
||||
int fitOctave(const std::vector<icf::Octave>& octs, const float& logFactor) const
|
||||
{
|
||||
float minAbsLog = FLT_MAX;
|
||||
int res = 0;
|
||||
for (int oct = 0; oct < (int)octs.size(); ++oct)
|
||||
{
|
||||
const icf::Octave& octave =octs[oct];
|
||||
float logOctave = ::log(octave.scale);
|
||||
float logAbsScale = ::fabs(logFactor - logOctave);
|
||||
// typedef std::vector<icf::Octave>::const_iterator octIt_t;
|
||||
// int fitOctave(const std::vector<icf::Octave>& octs, const float& logFactor) const
|
||||
// {
|
||||
// float minAbsLog = FLT_MAX;
|
||||
// int res = 0;
|
||||
// for (int oct = 0; oct < (int)octs.size(); ++oct)
|
||||
// {
|
||||
// const icf::Octave& octave =octs[oct];
|
||||
// float logOctave = ::log(octave.scale);
|
||||
// float logAbsScale = ::fabs(logFactor - logOctave);
|
||||
|
||||
if(logAbsScale < minAbsLog)
|
||||
{
|
||||
res = oct;
|
||||
minAbsLog = logAbsScale;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
// if(logAbsScale < minAbsLog)
|
||||
// {
|
||||
// res = oct;
|
||||
// minAbsLog = logAbsScale;
|
||||
// }
|
||||
// }
|
||||
// return res;
|
||||
// }
|
||||
};
|
||||
|
||||
inline bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs)
|
||||
{
|
||||
minScale = mins;
|
||||
maxScale = maxs;
|
||||
// inline bool cv::gpu::SoftCascade::Filds::fill(const FileNode &root, const float mins, const float maxs)
|
||||
// {
|
||||
// minScale = mins;
|
||||
// maxScale = maxs;
|
||||
|
||||
// cascade properties
|
||||
static const char *const SC_STAGE_TYPE = "stageType";
|
||||
static const char *const SC_BOOST = "BOOST";
|
||||
// // cascade properties
|
||||
// static const char *const SC_STAGE_TYPE = "stageType";
|
||||
// static const char *const SC_BOOST = "BOOST";
|
||||
|
||||
static const char *const SC_FEATURE_TYPE = "featureType";
|
||||
static const char *const SC_ICF = "ICF";
|
||||
// static const char *const SC_FEATURE_TYPE = "featureType";
|
||||
// static const char *const SC_ICF = "ICF";
|
||||
|
||||
static const char *const SC_ORIG_W = "width";
|
||||
static const char *const SC_ORIG_H = "height";
|
||||
// static const char *const SC_ORIG_W = "width";
|
||||
// static const char *const SC_ORIG_H = "height";
|
||||
|
||||
static const char *const SC_OCTAVES = "octaves";
|
||||
static const char *const SC_STAGES = "stages";
|
||||
static const char *const SC_FEATURES = "features";
|
||||
// static const char *const SC_OCTAVES = "octaves";
|
||||
// static const char *const SC_STAGES = "stages";
|
||||
// static const char *const SC_FEATURES = "features";
|
||||
|
||||
static const char *const SC_WEEK = "weakClassifiers";
|
||||
static const char *const SC_INTERNAL = "internalNodes";
|
||||
static const char *const SC_LEAF = "leafValues";
|
||||
// static const char *const SC_WEEK = "weakClassifiers";
|
||||
// static const char *const SC_INTERNAL = "internalNodes";
|
||||
// static const char *const SC_LEAF = "leafValues";
|
||||
|
||||
static const char *const SC_OCT_SCALE = "scale";
|
||||
static const char *const SC_OCT_STAGES = "stageNum";
|
||||
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||
// static const char *const SC_OCT_SCALE = "scale";
|
||||
// static const char *const SC_OCT_STAGES = "stageNum";
|
||||
// static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||
|
||||
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
|
||||
// static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
|
||||
|
||||
static const char * const SC_F_CHANNEL = "channel";
|
||||
static const char * const SC_F_RECT = "rect";
|
||||
// static const char * const SC_F_CHANNEL = "channel";
|
||||
// static const char * const SC_F_RECT = "rect";
|
||||
|
||||
// only Ada Boost supported
|
||||
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
|
||||
CV_Assert(stageTypeStr == SC_BOOST);
|
||||
// // only Ada Boost supported
|
||||
// std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
|
||||
// CV_Assert(stageTypeStr == SC_BOOST);
|
||||
|
||||
// only HOG-like integral channel features cupported
|
||||
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
|
||||
CV_Assert(featureTypeStr == SC_ICF);
|
||||
// // only HOG-like integral channel features cupported
|
||||
// string featureTypeStr = (string)root[SC_FEATURE_TYPE];
|
||||
// CV_Assert(featureTypeStr == SC_ICF);
|
||||
|
||||
origObjWidth = (int)root[SC_ORIG_W];
|
||||
CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH);
|
||||
// origObjWidth = (int)root[SC_ORIG_W];
|
||||
// CV_Assert(origObjWidth == ORIG_OBJECT_WIDTH);
|
||||
|
||||
origObjHeight = (int)root[SC_ORIG_H];
|
||||
CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT);
|
||||
// origObjHeight = (int)root[SC_ORIG_H];
|
||||
// CV_Assert(origObjHeight == ORIG_OBJECT_HEIGHT);
|
||||
|
||||
FileNode fn = root[SC_OCTAVES];
|
||||
if (fn.empty()) return false;
|
||||
// FileNode fn = root[SC_OCTAVES];
|
||||
// if (fn.empty()) return false;
|
||||
|
||||
std::vector<icf::Octave> voctaves;
|
||||
std::vector<float> vstages;
|
||||
std::vector<icf::Node> vnodes;
|
||||
std::vector<float> vleaves;
|
||||
std::vector<icf::Feature> vfeatures;
|
||||
scales.clear();
|
||||
// std::vector<icf::Octave> voctaves;
|
||||
// std::vector<float> vstages;
|
||||
// std::vector<icf::Node> vnodes;
|
||||
// std::vector<float> vleaves;
|
||||
// std::vector<icf::Feature> vfeatures;
|
||||
// scales.clear();
|
||||
|
||||
// std::vector<Level> levels;
|
||||
// // std::vector<Level> levels;
|
||||
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
int feature_offset = 0;
|
||||
ushort octIndex = 0;
|
||||
ushort shrinkage = 1;
|
||||
// FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
// int feature_offset = 0;
|
||||
// ushort octIndex = 0;
|
||||
// ushort shrinkage = 1;
|
||||
|
||||
for (; it != it_end; ++it)
|
||||
{
|
||||
FileNode fns = *it;
|
||||
float scale = (float)fns[SC_OCT_SCALE];
|
||||
scales.push_back(scale);
|
||||
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
|
||||
ushort2 size;
|
||||
size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
|
||||
size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
|
||||
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
|
||||
// for (; it != it_end; ++it)
|
||||
// {
|
||||
// FileNode fns = *it;
|
||||
// float scale = (float)fns[SC_OCT_SCALE];
|
||||
// scales.push_back(scale);
|
||||
// ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
|
||||
// ushort2 size;
|
||||
// size.x = cvRound(ORIG_OBJECT_WIDTH * scale);
|
||||
// size.y = cvRound(ORIG_OBJECT_HEIGHT * scale);
|
||||
// shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
|
||||
|
||||
icf::Octave octave(octIndex, nstages, shrinkage, size, scale);
|
||||
CV_Assert(octave.stages > 0);
|
||||
voctaves.push_back(octave);
|
||||
// icf::Octave octave(octIndex, nstages, shrinkage, size, scale);
|
||||
// CV_Assert(octave.stages > 0);
|
||||
// voctaves.push_back(octave);
|
||||
|
||||
FileNode ffs = fns[SC_FEATURES];
|
||||
if (ffs.empty()) return false;
|
||||
// FileNode ffs = fns[SC_FEATURES];
|
||||
// if (ffs.empty()) return false;
|
||||
|
||||
fns = fns[SC_STAGES];
|
||||
if (fn.empty()) return false;
|
||||
// fns = fns[SC_STAGES];
|
||||
// if (fn.empty()) return false;
|
||||
|
||||
// for each stage (~ decision tree with H = 2)
|
||||
FileNodeIterator st = fns.begin(), st_end = fns.end();
|
||||
for (; st != st_end; ++st )
|
||||
{
|
||||
fns = *st;
|
||||
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
|
||||
// // for each stage (~ decision tree with H = 2)
|
||||
// FileNodeIterator st = fns.begin(), st_end = fns.end();
|
||||
// for (; st != st_end; ++st )
|
||||
// {
|
||||
// fns = *st;
|
||||
// vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
|
||||
|
||||
fns = fns[SC_WEEK];
|
||||
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
|
||||
for (; ftr != ft_end; ++ftr)
|
||||
{
|
||||
fns = (*ftr)[SC_INTERNAL];
|
||||
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end;)
|
||||
{
|
||||
int feature = (int)(*(inIt +=2)++) + feature_offset;
|
||||
float th = (float)(*(inIt++));
|
||||
vnodes.push_back(icf::Node(feature, th));
|
||||
}
|
||||
// fns = fns[SC_WEEK];
|
||||
// FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
|
||||
// for (; ftr != ft_end; ++ftr)
|
||||
// {
|
||||
// fns = (*ftr)[SC_INTERNAL];
|
||||
// FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
|
||||
// for (; inIt != inIt_end;)
|
||||
// {
|
||||
// int feature = (int)(*(inIt +=2)++) + feature_offset;
|
||||
// float th = (float)(*(inIt++));
|
||||
// vnodes.push_back(icf::Node(feature, th));
|
||||
// }
|
||||
|
||||
fns = (*ftr)[SC_LEAF];
|
||||
inIt = fns.begin(), inIt_end = fns.end();
|
||||
for (; inIt != inIt_end; ++inIt)
|
||||
vleaves.push_back((float)(*inIt));
|
||||
}
|
||||
}
|
||||
// fns = (*ftr)[SC_LEAF];
|
||||
// inIt = fns.begin(), inIt_end = fns.end();
|
||||
// for (; inIt != inIt_end; ++inIt)
|
||||
// vleaves.push_back((float)(*inIt));
|
||||
// }
|
||||
// }
|
||||
|
||||
st = ffs.begin(), st_end = ffs.end();
|
||||
for (; st != st_end; ++st )
|
||||
{
|
||||
cv::FileNode rn = (*st)[SC_F_RECT];
|
||||
cv::FileNodeIterator r_it = rn.begin();
|
||||
uchar4 rect;
|
||||
rect.x = saturate_cast<uchar>((int)*(r_it++));
|
||||
rect.y = saturate_cast<uchar>((int)*(r_it++));
|
||||
rect.z = saturate_cast<uchar>((int)*(r_it++));
|
||||
rect.w = saturate_cast<uchar>((int)*(r_it++));
|
||||
vfeatures.push_back(icf::Feature((int)(*st)[SC_F_CHANNEL], rect));
|
||||
}
|
||||
// st = ffs.begin(), st_end = ffs.end();
|
||||
// for (; st != st_end; ++st )
|
||||
// {
|
||||
// cv::FileNode rn = (*st)[SC_F_RECT];
|
||||
// cv::FileNodeIterator r_it = rn.begin();
|
||||
// uchar4 rect;
|
||||
// rect.x = saturate_cast<uchar>((int)*(r_it++));
|
||||
// rect.y = saturate_cast<uchar>((int)*(r_it++));
|
||||
// rect.z = saturate_cast<uchar>((int)*(r_it++));
|
||||
// rect.w = saturate_cast<uchar>((int)*(r_it++));
|
||||
// vfeatures.push_back(icf::Feature((int)(*st)[SC_F_CHANNEL], rect));
|
||||
// }
|
||||
|
||||
feature_offset += octave.stages * 3;
|
||||
++octIndex;
|
||||
}
|
||||
// feature_offset += octave.stages * 3;
|
||||
// ++octIndex;
|
||||
// }
|
||||
|
||||
// upload in gpu memory
|
||||
octaves.upload(cv::Mat(1, voctaves.size() * sizeof(icf::Octave), CV_8UC1, (uchar*)&(voctaves[0]) ));
|
||||
CV_Assert(!octaves.empty());
|
||||
// // upload in gpu memory
|
||||
// octaves.upload(cv::Mat(1, voctaves.size() * sizeof(icf::Octave), CV_8UC1, (uchar*)&(voctaves[0]) ));
|
||||
// CV_Assert(!octaves.empty());
|
||||
|
||||
stages.upload(cv::Mat(vstages).reshape(1,1));
|
||||
CV_Assert(!stages.empty());
|
||||
// stages.upload(cv::Mat(vstages).reshape(1,1));
|
||||
// CV_Assert(!stages.empty());
|
||||
|
||||
nodes.upload(cv::Mat(1, vnodes.size() * sizeof(icf::Node), CV_8UC1, (uchar*)&(vnodes[0]) ));
|
||||
CV_Assert(!nodes.empty());
|
||||
// nodes.upload(cv::Mat(1, vnodes.size() * sizeof(icf::Node), CV_8UC1, (uchar*)&(vnodes[0]) ));
|
||||
// CV_Assert(!nodes.empty());
|
||||
|
||||
leaves.upload(cv::Mat(vleaves).reshape(1,1));
|
||||
CV_Assert(!leaves.empty());
|
||||
// leaves.upload(cv::Mat(vleaves).reshape(1,1));
|
||||
// CV_Assert(!leaves.empty());
|
||||
|
||||
features.upload(cv::Mat(1, vfeatures.size() * sizeof(icf::Feature), CV_8UC1, (uchar*)&(vfeatures[0]) ));
|
||||
CV_Assert(!features.empty());
|
||||
// features.upload(cv::Mat(1, vfeatures.size() * sizeof(icf::Feature), CV_8UC1, (uchar*)&(vfeatures[0]) ));
|
||||
// CV_Assert(!features.empty());
|
||||
|
||||
// compute levels
|
||||
calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
|
||||
CV_Assert(!levels.empty());
|
||||
// // compute levels
|
||||
// calcLevels(voctaves, FRAME_WIDTH, FRAME_HEIGHT, TOTAL_SCALES);
|
||||
// CV_Assert(!levels.empty());
|
||||
|
||||
//init Cascade
|
||||
cascade = icf::Cascade(octaves, stages, nodes, leaves, features, levels);
|
||||
// //init Cascade
|
||||
// cascade = icf::Cascade(octaves, stages, nodes, leaves, features, levels);
|
||||
|
||||
// allocate buffers
|
||||
dmem.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
|
||||
shrunk.create(FRAME_HEIGHT / shrinkage * HOG_LUV_BINS, FRAME_WIDTH / shrinkage, CV_8UC1);
|
||||
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
|
||||
hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_32SC1);
|
||||
luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
|
||||
integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1);
|
||||
// // allocate buffers
|
||||
// dmem.create(FRAME_HEIGHT * (HOG_LUV_BINS + 1), FRAME_WIDTH, CV_8UC1);
|
||||
// shrunk.create(FRAME_HEIGHT / shrinkage * HOG_LUV_BINS, FRAME_WIDTH / shrinkage, CV_8UC1);
|
||||
// // hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_16UC1);
|
||||
// hogluv.create( (FRAME_HEIGHT / shrinkage + 1) * HOG_LUV_BINS, (FRAME_WIDTH / shrinkage + 1), CV_32SC1);
|
||||
// luv.create(FRAME_HEIGHT, FRAME_WIDTH, CV_8UC3);
|
||||
// integralBuffer.create(shrunk.rows + 1 * HOG_LUV_BINS, shrunk.cols + 1, CV_32SC1);
|
||||
|
||||
dfdx.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
dfdy.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
angle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
mag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
// dfdx.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
// dfdy.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
// angle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
// mag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
|
||||
nmag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
nangle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
// nmag.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
// nangle.create(FRAME_HEIGHT, FRAME_WIDTH, CV_32FC1);
|
||||
|
||||
storage = icf::ChannelStorage(dmem, shrunk, hogluv, shrinkage);
|
||||
return true;
|
||||
}
|
||||
// storage = icf::ChannelStorage(dmem, shrunk, hogluv, shrinkage);
|
||||
// return true;
|
||||
// }
|
||||
|
||||
namespace {
|
||||
struct CascadeIntrinsics
|
||||
{
|
||||
static const float lambda = 1.099f, a = 0.89f;
|
||||
// namespace {
|
||||
// struct CascadeIntrinsics
|
||||
// {
|
||||
// static const float lambda = 1.099f, a = 0.89f;
|
||||
|
||||
static float getFor(int channel, float scaling)
|
||||
{
|
||||
CV_Assert(channel < 10);
|
||||
// static float getFor(int channel, float scaling)
|
||||
// {
|
||||
// CV_Assert(channel < 10);
|
||||
|
||||
if (fabs(scaling - 1.f) < FLT_EPSILON)
|
||||
return 1.f;
|
||||
// if (fabs(scaling - 1.f) < FLT_EPSILON)
|
||||
// return 1.f;
|
||||
|
||||
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
||||
static const float A[2][2] =
|
||||
{ //channel <= 6, otherwise
|
||||
{ 0.89f, 1.f}, // down
|
||||
{ 1.00f, 1.f} // up
|
||||
};
|
||||
// // according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
|
||||
// static const float A[2][2] =
|
||||
// { //channel <= 6, otherwise
|
||||
// { 0.89f, 1.f}, // down
|
||||
// { 1.00f, 1.f} // up
|
||||
// };
|
||||
|
||||
static const float B[2][2] =
|
||||
{ //channel <= 6, otherwise
|
||||
{ 1.099f / log(2), 2.f}, // down
|
||||
{ 0.f, 2.f} // up
|
||||
};
|
||||
// static const float B[2][2] =
|
||||
// { //channel <= 6, otherwise
|
||||
// { 1.099f / log(2), 2.f}, // down
|
||||
// { 0.f, 2.f} // up
|
||||
// };
|
||||
|
||||
float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
|
||||
float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
|
||||
// float a = A[(int)(scaling >= 1)][(int)(channel > 6)];
|
||||
// float b = B[(int)(scaling >= 1)][(int)(channel > 6)];
|
||||
|
||||
// printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
|
||||
return a * pow(scaling, b);
|
||||
}
|
||||
};
|
||||
}
|
||||
// // printf("!!! scaling: %f %f %f -> %f\n", scaling, a, b, a * pow(scaling, b));
|
||||
// return a * pow(scaling, b);
|
||||
// }
|
||||
// };
|
||||
// }
|
||||
|
||||
inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<icf::Octave>& octs,
|
||||
int frameW, int frameH, int nscales)
|
||||
{
|
||||
CV_Assert(nscales > 1);
|
||||
// inline void cv::gpu::SoftCascade::Filds::calcLevels(const std::vector<icf::Octave>& octs,
|
||||
// int frameW, int frameH, int nscales)
|
||||
// {
|
||||
// CV_Assert(nscales > 1);
|
||||
|
||||
std::vector<icf::Level> vlevels;
|
||||
float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1);
|
||||
// std::vector<icf::Level> vlevels;
|
||||
// float logFactor = (::log(maxScale) - ::log(minScale)) / (nscales -1);
|
||||
|
||||
float scale = minScale;
|
||||
for (int sc = 0; sc < nscales; ++sc)
|
||||
{
|
||||
int width = ::std::max(0.0f, frameW - (origObjWidth * scale));
|
||||
int height = ::std::max(0.0f, frameH - (origObjHeight * scale));
|
||||
// float scale = minScale;
|
||||
// for (int sc = 0; sc < nscales; ++sc)
|
||||
// {
|
||||
// int width = ::std::max(0.0f, frameW - (origObjWidth * scale));
|
||||
// int height = ::std::max(0.0f, frameH - (origObjHeight * scale));
|
||||
|
||||
float logScale = ::log(scale);
|
||||
int fit = fitOctave(octs, logScale);
|
||||
// float logScale = ::log(scale);
|
||||
// int fit = fitOctave(octs, logScale);
|
||||
|
||||
icf::Level level(fit, octs[fit], scale, width, height);
|
||||
level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
|
||||
level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
|
||||
// icf::Level level(fit, octs[fit], scale, width, height);
|
||||
// level.scaling[0] = CascadeIntrinsics::getFor(0, level.relScale);
|
||||
// level.scaling[1] = CascadeIntrinsics::getFor(9, level.relScale);
|
||||
|
||||
if (!width || !height)
|
||||
break;
|
||||
else
|
||||
vlevels.push_back(level);
|
||||
// if (!width || !height)
|
||||
// break;
|
||||
// else
|
||||
// vlevels.push_back(level);
|
||||
|
||||
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
|
||||
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
|
||||
// if (::fabs(scale - maxScale) < FLT_EPSILON) break;
|
||||
// scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
|
||||
|
||||
// printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
|
||||
// level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
|
||||
// // printf("level: %d (%f %f) [%f %f] (%d %d) (%d %d)\n", level.octave, level.relScale, level.shrScale,
|
||||
// // level.scaling[0], level.scaling[1], level.workRect.x, level.workRect.y, level.objSize.x, level.objSize.y);
|
||||
|
||||
// std::cout << "level " << sc
|
||||
// << " octeve "
|
||||
// << vlevels[sc].octave
|
||||
// << " relScale "
|
||||
// << vlevels[sc].relScale
|
||||
// << " " << vlevels[sc].shrScale
|
||||
// << " [" << (int)vlevels[sc].objSize.x
|
||||
// << " " << (int)vlevels[sc].objSize.y << "] ["
|
||||
// << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
|
||||
}
|
||||
levels.upload(cv::Mat(1, vlevels.size() * sizeof(icf::Level), CV_8UC1, (uchar*)&(vlevels[0]) ));
|
||||
}
|
||||
// // std::cout << "level " << sc
|
||||
// // << " octeve "
|
||||
// // << vlevels[sc].octave
|
||||
// // << " relScale "
|
||||
// // << vlevels[sc].relScale
|
||||
// // << " " << vlevels[sc].shrScale
|
||||
// // << " [" << (int)vlevels[sc].objSize.x
|
||||
// // << " " << (int)vlevels[sc].objSize.y << "] ["
|
||||
// // << (int)vlevels[sc].workRect.x << " " << (int)vlevels[sc].workRect.y << "]" << std::endl;
|
||||
// }
|
||||
// levels.upload(cv::Mat(1, vlevels.size() * sizeof(icf::Level), CV_8UC1, (uchar*)&(vlevels[0]) ));
|
||||
// }
|
||||
|
||||
cv::gpu::SoftCascade::SoftCascade() : filds(0) {}
|
||||
|
||||
@ -419,97 +423,89 @@ bool cv::gpu::SoftCascade::load( const string& filename, const float minScale, c
|
||||
if (!fs.isOpened()) return false;
|
||||
|
||||
filds = new Filds;
|
||||
Filds& flds = *filds;
|
||||
if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
|
||||
// Filds& flds = *filds;
|
||||
// if (!flds.fill(fs.getFirstTopLevelNode(), minScale, maxScale)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace {
|
||||
char *itoa(long i, char* s, int /*dummy_radix*/)
|
||||
{
|
||||
sprintf(s, "%ld", i);
|
||||
return s;
|
||||
}
|
||||
}
|
||||
|
||||
#define USE_REFERENCE_VALUES
|
||||
// #define USE_REFERENCE_VALUES
|
||||
void cv::gpu::SoftCascade::detectMultiScale(const GpuMat& colored, const GpuMat& /*rois*/,
|
||||
GpuMat& objects, const int /*rejectfactor*/, Stream s)
|
||||
{
|
||||
// only color images are supperted
|
||||
CV_Assert(colored.type() == CV_8UC3);
|
||||
// // only color images are supperted
|
||||
// CV_Assert(colored.type() == CV_8UC3);
|
||||
|
||||
// // only this window size allowed
|
||||
CV_Assert(colored.cols == 640 && colored.rows == 480);
|
||||
// // // only this window size allowed
|
||||
// CV_Assert(colored.cols == 640 && colored.rows == 480);
|
||||
|
||||
Filds& flds = *filds;
|
||||
// Filds& flds = *filds;
|
||||
|
||||
#if defined USE_REFERENCE_VALUES
|
||||
cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
|
||||
cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ);
|
||||
char buff[33];
|
||||
// #if defined USE_REFERENCE_VALUES
|
||||
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
|
||||
// cv::FileStorage imgs("/home/kellan/testInts.xml", cv::FileStorage::READ);
|
||||
// char buff[33];
|
||||
|
||||
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
|
||||
{
|
||||
cv::Mat channel;
|
||||
imgs[std::string("channel") + itoa(i, buff, 10)] >> channel;
|
||||
GpuMat gchannel(flds.hogluv, cv::Rect(0, 121 * i, 161, 121));
|
||||
gchannel.upload(channel);
|
||||
}
|
||||
#else
|
||||
GpuMat& dmem = flds.dmem;
|
||||
cudaMemset(dmem.data, 0, dmem.step * dmem.rows);
|
||||
GpuMat& shrunk = flds.shrunk;
|
||||
int w = shrunk.cols;
|
||||
int h = colored.rows / flds.storage.shrinkage;
|
||||
// for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
|
||||
// {
|
||||
// cv::Mat channel;
|
||||
// imgs[std::string("channel") + itoa(i, buff, 10)] >> channel;
|
||||
// GpuMat gchannel(flds.hogluv, cv::Rect(0, 121 * i, 161, 121));
|
||||
// gchannel.upload(channel);
|
||||
// }
|
||||
// #else
|
||||
// GpuMat& dmem = flds.dmem;
|
||||
// cudaMemset(dmem.data, 0, dmem.step * dmem.rows);
|
||||
// GpuMat& shrunk = flds.shrunk;
|
||||
// int w = shrunk.cols;
|
||||
// int h = colored.rows / flds.storage.shrinkage;
|
||||
|
||||
std::vector<GpuMat> splited;
|
||||
for(int i = 0; i < 3; ++i)
|
||||
{
|
||||
splited.push_back(GpuMat(dmem, cv::Rect(0, colored.rows * (7 + i), colored.cols, colored.rows)));
|
||||
}
|
||||
// std::vector<GpuMat> splited;
|
||||
// for(int i = 0; i < 3; ++i)
|
||||
// {
|
||||
// splited.push_back(GpuMat(dmem, cv::Rect(0, colored.rows * (7 + i), colored.cols, colored.rows)));
|
||||
// }
|
||||
|
||||
GpuMat gray(dmem, cv::Rect(0, colored.rows * 10, colored.cols, colored.rows) );
|
||||
// GpuMat gray(dmem, cv::Rect(0, colored.rows * 10, colored.cols, colored.rows) );
|
||||
|
||||
cv::gpu::cvtColor(colored, gray, CV_RGB2GRAY);
|
||||
// cv::gpu::cvtColor(colored, gray, CV_RGB2GRAY);
|
||||
|
||||
//create hog
|
||||
cv::gpu::Sobel(gray, flds.dfdx, CV_32F, 1, 0, 3, 0.25);
|
||||
cv::gpu::Sobel(gray, flds.dfdy, CV_32F, 0, 1, 3, 0.25);
|
||||
// //create hog
|
||||
// cv::gpu::Sobel(gray, flds.dfdx, CV_32F, 1, 0, 3, 0.25);
|
||||
// cv::gpu::Sobel(gray, flds.dfdy, CV_32F, 0, 1, 3, 0.25);
|
||||
|
||||
cv::gpu::cartToPolar(flds.dfdx, flds.dfdy, flds.mag, flds.angle, true);
|
||||
// cv::gpu::cartToPolar(flds.dfdx, flds.dfdy, flds.mag, flds.angle, true);
|
||||
|
||||
cv::gpu::multiply(flds.mag, cv::Scalar::all(1.0 / ::log(2)), flds.nmag);
|
||||
cv::gpu::multiply(flds.angle, cv::Scalar::all(1.0 / 60.0), flds.nangle);
|
||||
// cv::gpu::multiply(flds.mag, cv::Scalar::all(1.0 / ::log(2)), flds.nmag);
|
||||
// cv::gpu::multiply(flds.angle, cv::Scalar::all(1.0 / 60.0), flds.nangle);
|
||||
|
||||
GpuMat magCannel(dmem, cv::Rect(0, colored.rows * 6, colored.cols, colored.rows));
|
||||
flds.nmag.convertTo(magCannel, CV_8UC1);
|
||||
device::icf::fillBins(dmem, flds.nangle);
|
||||
// GpuMat magCannel(dmem, cv::Rect(0, colored.rows * 6, colored.cols, colored.rows));
|
||||
// flds.nmag.convertTo(magCannel, CV_8UC1);
|
||||
// device::icf::fillBins(dmem, flds.nangle);
|
||||
|
||||
// create luv
|
||||
cv::gpu::cvtColor(colored, flds.luv, CV_BGR2Luv);
|
||||
cv::gpu::split(flds.luv, splited);
|
||||
// // create luv
|
||||
// cv::gpu::cvtColor(colored, flds.luv, CV_BGR2Luv);
|
||||
// cv::gpu::split(flds.luv, splited);
|
||||
|
||||
GpuMat plane(dmem, cv::Rect(0, 0, colored.cols, colored.rows * Filds::HOG_LUV_BINS));
|
||||
cv::gpu::resize(plane, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
|
||||
// GpuMat plane(dmem, cv::Rect(0, 0, colored.cols, colored.rows * Filds::HOG_LUV_BINS));
|
||||
// cv::gpu::resize(plane, flds.shrunk, cv::Size(), 0.25, 0.25, CV_INTER_AREA);
|
||||
|
||||
// fer debug purpose
|
||||
// cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
|
||||
// // fer debug purpose
|
||||
// // cudaMemset(flds.hogluv.data, 0, flds.hogluv.step * flds.hogluv.rows);
|
||||
|
||||
for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
|
||||
{
|
||||
GpuMat channel(shrunk, cv::Rect(0, h * i, w, h ));
|
||||
GpuMat sum(flds.hogluv, cv::Rect(0, (h + 1) * i, w + 1, h + 1));
|
||||
cv::gpu::integralBuffered(channel, sum, flds.integralBuffer);
|
||||
}
|
||||
// for(int i = 0; i < Filds::HOG_LUV_BINS; ++i)
|
||||
// {
|
||||
// GpuMat channel(shrunk, cv::Rect(0, h * i, w, h ));
|
||||
// GpuMat sum(flds.hogluv, cv::Rect(0, (h + 1) * i, w + 1, h + 1));
|
||||
// cv::gpu::integralBuffered(channel, sum, flds.integralBuffer);
|
||||
// }
|
||||
|
||||
#endif
|
||||
// #endif
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
// detection
|
||||
flds.detect(objects, stream);
|
||||
// cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
// // detection
|
||||
// flds.detect(objects, stream);
|
||||
|
||||
// flds.storage.frame(colored, stream);
|
||||
// // flds.storage.frame(colored, stream);
|
||||
}
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user