integrated parallel SVM prediction; fixed warnings after meanshift integration

This commit is contained in:
Vadim Pisarevsky
2011-04-19 16:20:44 +00:00
parent 537a36115f
commit 17a2480a21
5 changed files with 133 additions and 10 deletions

View File

@@ -1396,7 +1396,7 @@ int createSchedule(const CvLSVMFeaturePyramid *H, const CvLSVMFilterObject **all
const int threadsNum, int *kLevels, int **processingLevels)
{
int rootFilterDim, sumPartFiltersDim, i, numLevels, dbx, dby, numDotProducts;
int averNumDotProd, j, minValue, argMin, tmp, lambda, maxValue, k;
int averNumDotProd, j, minValue, argMin, lambda, maxValue, k;
int *dotProd, *weights, *disp;
if (H == NULL || all_F == NULL)
{

View File

@@ -44,11 +44,17 @@
using namespace cv;
MeanshiftGrouping::MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV,
const vector<double>& wV, double modeEps, int maxIter):
densityKernel(densKer), weightsV(wV), positionsV(posV), positionsCount(posV.size()),
meanshiftV(positionsCount), distanceV(positionsCount), modeEps(modeEps),
iterMax (maxIter)
const vector<double>& wV, double modeEps, int maxIter)
{
densityKernel = densKer;
weightsV = wV;
positionsV = posV;
positionsCount = posV.size();
meanshiftV.resize(positionsCount);
distanceV.resize(positionsCount);
modeEps = modeEps;
iterMax = maxIter;
for (unsigned i=0; i<positionsV.size(); i++)
{
meanshiftV[i] = getNewValue(positionsV[i]);