integrated parallel SVM prediction; fixed warnings after meanshift integration
This commit is contained in:
@@ -1396,7 +1396,7 @@ int createSchedule(const CvLSVMFeaturePyramid *H, const CvLSVMFilterObject **all
|
||||
const int threadsNum, int *kLevels, int **processingLevels)
|
||||
{
|
||||
int rootFilterDim, sumPartFiltersDim, i, numLevels, dbx, dby, numDotProducts;
|
||||
int averNumDotProd, j, minValue, argMin, tmp, lambda, maxValue, k;
|
||||
int averNumDotProd, j, minValue, argMin, lambda, maxValue, k;
|
||||
int *dotProd, *weights, *disp;
|
||||
if (H == NULL || all_F == NULL)
|
||||
{
|
||||
|
@@ -44,11 +44,17 @@
|
||||
using namespace cv;
|
||||
|
||||
MeanshiftGrouping::MeanshiftGrouping(const Point3d& densKer, const vector<Point3d>& posV,
|
||||
const vector<double>& wV, double modeEps, int maxIter):
|
||||
densityKernel(densKer), weightsV(wV), positionsV(posV), positionsCount(posV.size()),
|
||||
meanshiftV(positionsCount), distanceV(positionsCount), modeEps(modeEps),
|
||||
iterMax (maxIter)
|
||||
const vector<double>& wV, double modeEps, int maxIter)
|
||||
{
|
||||
densityKernel = densKer;
|
||||
weightsV = wV;
|
||||
positionsV = posV;
|
||||
positionsCount = posV.size();
|
||||
meanshiftV.resize(positionsCount);
|
||||
distanceV.resize(positionsCount);
|
||||
modeEps = modeEps;
|
||||
iterMax = maxIter;
|
||||
|
||||
for (unsigned i=0; i<positionsV.size(); i++)
|
||||
{
|
||||
meanshiftV[i] = getNewValue(positionsV[i]);
|
||||
|
Reference in New Issue
Block a user