Mantiuk's tonemapping

This commit is contained in:
Fedor Morozov 2013-08-05 19:22:42 +04:00
parent c51b50b44c
commit 17609b90c7
9 changed files with 835 additions and 630 deletions

View File

@ -123,10 +123,9 @@ HdrEncoder::~HdrEncoder()
bool HdrEncoder::write( const Mat& _img, const std::vector<int>& params )
{
CV_Assert(_img.channels() == 3);
Mat img;
if(_img.depth() == CV_32F) {
_img.convertTo(img, CV_32FC3);
} else {
if(_img.depth() != CV_32F) {
_img.convertTo(img, CV_32FC3, 1/255.0f);
}
CV_Assert(params.empty() || params[0] == HDR_NONE || params[0] == HDR_RLE);

View File

@ -102,17 +102,25 @@ CV_EXPORTS_W Ptr<TonemapLinear> createTonemapLinear(float gamma = 1.0f);
class CV_EXPORTS_W TonemapDrago : public Tonemap
{
public:
CV_WRAP virtual float getSaturation() const = 0;
CV_WRAP virtual void setSaturation(float saturation) = 0;
CV_WRAP virtual float getBias() const = 0;
CV_WRAP virtual void setBias(float bias) = 0;
};
CV_EXPORTS_W Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float bias = 0.85f);
CV_EXPORTS_W Ptr<TonemapDrago> createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f);
// "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images", Durand, Dorsey, 2002
class CV_EXPORTS_W TonemapDurand : public Tonemap
{
public:
CV_WRAP virtual float getSaturation() const = 0;
CV_WRAP virtual void setSaturation(float saturation) = 0;
CV_WRAP virtual float getContrast() const = 0;
CV_WRAP virtual void setContrast(float contrast) = 0;
@ -124,7 +132,7 @@ public:
};
CV_EXPORTS_W Ptr<TonemapDurand>
createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float sigma_space = 2.0f, float sigma_color = 2.0f);
createTonemapDurand(float gamma = 1.0f, float saturation = 1.0f, float contrast = 4.0f, float sigma_space = 2.0f, float sigma_color = 2.0f);
// "Dynamic Range Reduction Inspired by Photoreceptor Physiology", Reinhard, Devlin, 2005
@ -144,6 +152,19 @@ public:
CV_EXPORTS_W Ptr<TonemapReinhardDevlin>
createTonemapReinhardDevlin(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f);
class CV_EXPORTS_W TonemapMantiuk : public Tonemap
{
public:
CV_WRAP virtual float getScale() const = 0;
CV_WRAP virtual void setScale(float scale) = 0;
CV_WRAP virtual float getSaturation() const = 0;
CV_WRAP virtual void setSaturation(float saturation) = 0;
};
CV_EXPORTS_W Ptr<TonemapMantiuk>
createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f);
class CV_EXPORTS_W ExposureAlign : public Algorithm
{
public:

View File

@ -71,4 +71,16 @@ Mat tringleWeights()
return w;
}
void mapLuminance(Mat src, Mat dst, Mat lum, Mat new_lum, float saturation)
{
std::vector<Mat> channels(3);
split(src, channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(1.0f / lum);
pow(channels[i], saturation, channels[i]);
channels[i] = channels[i].mul(new_lum);
}
merge(channels, dst);
}
};

View File

@ -53,6 +53,8 @@ void checkImageDimensions(const std::vector<Mat>& images);
Mat tringleWeights();
void mapLuminance(Mat src, Mat dst, Mat lum, Mat new_lum, float saturation);
};
#endif

View File

@ -109,7 +109,7 @@ public:
Mat response(256, 3, CV_32F);
for(int i = 0; i < 256; i++) {
for(int j = 0; j < 3; j++) {
response.at<float>(i, j) = max(i, 1);
response.at<float>(i, j) = static_cast<float>(max(i, 1));
}
}
process(src, dst, times, response);

View File

@ -43,6 +43,7 @@
#include "precomp.hpp"
#include "opencv2/photo.hpp"
#include "opencv2/imgproc.hpp"
#include "hdr_common.hpp"
namespace cv
{
@ -101,10 +102,11 @@ Ptr<TonemapLinear> createTonemapLinear(float gamma)
class TonemapDragoImpl : public TonemapDrago
{
public:
TonemapDragoImpl(float gamma, float bias) :
TonemapDragoImpl(float gamma, float saturation, float bias) :
gamma(gamma),
saturation(saturation),
bias(bias),
name("TonemapLinear")
name("TonemapDrago")
{
}
@ -135,17 +137,9 @@ public:
pow(gray_img / static_cast<float>(max), logf(bias) / logf(0.5f), div);
log(2.0f + 8.0f * div, div);
map = map.mul(1.0f / div);
map = map.mul(1.0f / gray_img);
div.release();
gray_img.release();
std::vector<Mat> channels(3);
split(img, channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map);
}
map.release();
merge(channels, img);
mapLuminance(img, img, gray_img, map, saturation);
linear->setGamma(gamma);
linear->process(img, img);
@ -154,6 +148,9 @@ public:
float getGamma() const { return gamma; }
void setGamma(float val) { gamma = val; }
float getSaturation() const { return saturation; }
void setSaturation(float val) { saturation = val; }
float getBias() const { return bias; }
void setBias(float val) { bias = val; }
@ -161,7 +158,8 @@ public:
{
fs << "name" << name
<< "gamma" << gamma
<< "bias" << bias;
<< "bias" << bias
<< "saturation" << saturation;
}
void read(const FileNode& fn)
@ -170,23 +168,25 @@ public:
CV_Assert(n.isString() && String(n) == name);
gamma = fn["gamma"];
bias = fn["bias"];
saturation = fn["saturation"];
}
protected:
String name;
float gamma, bias;
float gamma, saturation, bias;
};
Ptr<TonemapDrago> createTonemapDrago(float gamma, float bias)
Ptr<TonemapDrago> createTonemapDrago(float gamma, float saturation, float bias)
{
return new TonemapDragoImpl(gamma, bias);
return new TonemapDragoImpl(gamma, saturation, bias);
}
class TonemapDurandImpl : public TonemapDurand
{
public:
TonemapDurandImpl(float gamma, float contrast, float sigma_color, float sigma_space) :
TonemapDurandImpl(float gamma, float saturation, float contrast, float sigma_color, float sigma_space) :
gamma(gamma),
saturation(saturation),
contrast(contrast),
sigma_color(sigma_color),
sigma_space(sigma_space),
@ -199,10 +199,12 @@ public:
Mat src = _src.getMat();
CV_Assert(!src.empty());
_dst.create(src.size(), CV_32FC3);
Mat dst = _dst.getMat();
Mat img = _dst.getMat();
Ptr<TonemapLinear> linear = createTonemapLinear(1.0f);
linear->process(src, img);
Mat gray_img;
cvtColor(src, gray_img, COLOR_RGB2GRAY);
cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
Mat map_img;
@ -211,24 +213,19 @@ public:
double min, max;
minMaxLoc(map_img, &min, &max);
float scale = contrast / static_cast<float>(max - min);
exp(map_img * (scale - 1.0f) + log_img, map_img);
log_img.release();
map_img = map_img.mul(1.0f / gray_img);
gray_img.release();
std::vector<Mat> channels(3);
split(src, channels);
for(int i = 0; i < 3; i++) {
channels[i] = channels[i].mul(map_img);
}
merge(channels, dst);
pow(dst, 1.0f / gamma, dst);
mapLuminance(img, img, gray_img, map_img, saturation);
pow(img, 1.0f / gamma, img);
}
float getGamma() const { return gamma; }
void setGamma(float val) { gamma = val; }
float getSaturation() const { return saturation; }
void setSaturation(float val) { saturation = val; }
float getContrast() const { return contrast; }
void setContrast(float val) { contrast = val; }
@ -244,7 +241,8 @@ public:
<< "gamma" << gamma
<< "contrast" << contrast
<< "sigma_color" << sigma_color
<< "sigma_space" << sigma_space;
<< "sigma_space" << sigma_space
<< "saturation" << saturation;
}
void read(const FileNode& fn)
@ -255,16 +253,17 @@ public:
contrast = fn["contrast"];
sigma_color = fn["sigma_color"];
sigma_space = fn["sigma_space"];
saturation = fn["saturation"];
}
protected:
String name;
float gamma, contrast, sigma_color, sigma_space;
float gamma, saturation, contrast, sigma_color, sigma_space;
};
Ptr<TonemapDurand> createTonemapDurand(float gamma, float contrast, float sigma_color, float sigma_space)
Ptr<TonemapDurand> createTonemapDurand(float gamma, float saturation, float contrast, float sigma_color, float sigma_space)
{
return new TonemapDurandImpl(gamma, contrast, sigma_color, sigma_space);
return new TonemapDurandImpl(gamma, saturation, contrast, sigma_color, sigma_space);
}
class TonemapReinhardDevlinImpl : public TonemapReinhardDevlin
@ -285,7 +284,6 @@ public:
CV_Assert(!src.empty());
_dst.create(src.size(), CV_32FC3);
Mat img = _dst.getMat();
Ptr<TonemapLinear> linear = createTonemapLinear(1.0f);
linear->process(src, img);
@ -363,4 +361,172 @@ Ptr<TonemapReinhardDevlin> createTonemapReinhardDevlin(float gamma, float contra
return new TonemapReinhardDevlinImpl(gamma, contrast, sigma_color, sigma_space);
}
class TonemapMantiukImpl : public TonemapMantiuk
{
public:
TonemapMantiukImpl(float gamma, float scale, float saturation) :
gamma(gamma),
scale(scale),
saturation(saturation),
name("TonemapMantiuk")
{
}
void process(InputArray _src, OutputArray _dst)
{
Mat src = _src.getMat();
CV_Assert(!src.empty());
_dst.create(src.size(), CV_32FC3);
Mat img = _dst.getMat();
Ptr<TonemapLinear> linear = createTonemapLinear(1.0f);
linear->process(src, img);
Mat gray_img;
cvtColor(img, gray_img, COLOR_RGB2GRAY);
Mat log_img;
log(gray_img, log_img);
std::vector<Mat> x_contrast, y_contrast;
getContrast(log_img, x_contrast, y_contrast);
for(size_t i = 0; i < x_contrast.size(); i++) {
mapContrast(x_contrast[i], scale);
mapContrast(y_contrast[i], scale);
}
Mat right(src.size(), CV_32F);
calculateSum(x_contrast, y_contrast, right);
Mat p, r, product, x = log_img;
calculateProduct(x, r);
r = right - r;
r.copyTo(p);
const float target_error = 1e-3f;
float target_norm = static_cast<float>(right.dot(right)) * powf(target_error, 2.0f);
int max_iterations = 100;
float rr = static_cast<float>(r.dot(r));
for(int i = 0; i < max_iterations; i++)
{
calculateProduct(p, product);
float alpha = rr / static_cast<float>(p.dot(product));
r -= alpha * product;
x += alpha * p;
float new_rr = static_cast<float>(r.dot(r));
p = r + (new_rr / rr) * p;
rr = new_rr;
if(rr < target_norm) {
break;
}
}
exp(x, x);
mapLuminance(img, img, gray_img, x, saturation);
linear = createTonemapLinear(gamma);
linear->process(img, img);
}
float getGamma() const { return gamma; }
void setGamma(float val) { gamma = val; }
float getScale() const { return scale; }
void setScale(float val) { scale = val; }
float getSaturation() const { return saturation; }
void setSaturation(float val) { saturation = val; }
void write(FileStorage& fs) const
{
fs << "name" << name
<< "gamma" << gamma
<< "scale" << scale
<< "saturation" << saturation;
}
void read(const FileNode& fn)
{
FileNode n = fn["name"];
CV_Assert(n.isString() && String(n) == name);
gamma = fn["gamma"];
scale = fn["scale"];
saturation = fn["saturation"];
}
protected:
String name;
float gamma, scale, saturation;
void signedPow(Mat src, float power, Mat& dst)
{
Mat sign = (src > 0);
sign.convertTo(sign, CV_32F, 1/255.0f);
sign = sign * 2 - 1;
pow(abs(src), power, dst);
dst = dst.mul(sign);
}
void mapContrast(Mat& contrast, float scale)
{
const float response_power = 0.4185f;
signedPow(contrast, response_power, contrast);
contrast *= scale;
signedPow(contrast, 1.0f / response_power, contrast);
}
void getGradient(Mat src, Mat& dst, int pos)
{
dst = Mat::zeros(src.size(), CV_32F);
Mat a, b;
Mat grad = src.colRange(1, src.cols) - src.colRange(0, src.cols - 1);
grad.copyTo(dst.colRange(pos, src.cols + pos - 1));
if(pos == 1) {
src.col(0).copyTo(dst.col(0));
}
}
void getContrast(Mat src, std::vector<Mat>& x_contrast, std::vector<Mat>& y_contrast)
{
int levels = static_cast<int>(logf(static_cast<float>(min(src.rows, src.cols))) / logf(2.0f));
x_contrast.resize(levels);
y_contrast.resize(levels);
Mat layer;
src.copyTo(layer);
for(int i = 0; i < levels; i++) {
getGradient(layer, x_contrast[i], 0);
getGradient(layer.t(), y_contrast[i], 0);
resize(layer, layer, Size(layer.cols / 2, layer.rows / 2));
}
}
void calculateSum(std::vector<Mat>& x_contrast, std::vector<Mat>& y_contrast, Mat& sum)
{
sum = Mat::zeros(x_contrast[x_contrast.size() - 1].size(), CV_32F);
for(int i = x_contrast.size() - 1; i >= 0; i--)
{
Mat grad_x, grad_y;
getGradient(x_contrast[i], grad_x, 1);
getGradient(y_contrast[i], grad_y, 1);
resize(sum, sum, x_contrast[i].size());
sum += grad_x + grad_y.t();
}
}
void calculateProduct(Mat src, Mat& dst)
{
std::vector<Mat> x_contrast, y_contrast;
getContrast(src, x_contrast, y_contrast);
calculateSum(x_contrast, y_contrast, dst);
}
};
Ptr<TonemapMantiuk> createTonemapMantiuk(float gamma, float scale, float saturation)
{
return new TonemapMantiukImpl(gamma, scale, saturation);
}
}

View File

@ -91,12 +91,11 @@ void loadResponseCSV(String path, Mat& response)
TEST(Photo_Tonemap, regression)
{
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
Mat img, expected, result;
loadImage(test_path + "rle.hdr", img);
loadImage(test_path + "image.hdr", img);
float gamma = 2.2f;
test_path += "tonemap/";
Ptr<TonemapLinear> linear = createTonemapLinear(gamma);
linear->process(img, result);
@ -121,6 +120,12 @@ TEST(Photo_Tonemap, regression)
loadImage(test_path + "reinharddevlin.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
Ptr<TonemapMantiuk> mantiuk = createTonemapMantiuk(gamma);
mantiuk->process(img, result);
loadImage(test_path + "mantiuk.png", expected);
result.convertTo(result, CV_8UC3, 255);
checkEqual(result, expected, 0);
}
TEST(Photo_AlignMTB, regression)