Updated FLANN to version 1.5
This commit is contained in:
261
modules/flann/include/opencv2/flann/flann_base.hpp
Normal file
261
modules/flann/include/opencv2/flann/flann_base.hpp
Normal file
@@ -0,0 +1,261 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef FLANN_HPP_
|
||||
#define FLANN_HPP_
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <cassert>
|
||||
#include <cstdio>
|
||||
|
||||
#include "opencv2/flann/general.h"
|
||||
#include "opencv2/flann/matrix.h"
|
||||
#include "opencv2/flann/result_set.h"
|
||||
#include "opencv2/flann/index_testing.h"
|
||||
#include "opencv2/flann/object_factory.h"
|
||||
#include "opencv2/flann/saving.h"
|
||||
|
||||
#include "opencv2/flann/all_indices.h"
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
|
||||
/**
|
||||
Sets the log level used for all flann functions
|
||||
|
||||
Params:
|
||||
level = verbosity level
|
||||
*/
|
||||
void log_verbosity(int level);
|
||||
|
||||
|
||||
/**
|
||||
* Sets the distance type to use throughout FLANN.
|
||||
* If distance type specified is MINKOWSKI, the second argument
|
||||
* specifies which order the minkowski distance should have.
|
||||
*/
|
||||
void set_distance_type(flann_distance_t distance_type, int order);
|
||||
|
||||
|
||||
struct SavedIndexParams : public IndexParams {
|
||||
SavedIndexParams(std::string filename_) : IndexParams(SAVED), filename(filename_) {}
|
||||
|
||||
std::string filename; // filename of the stored index
|
||||
|
||||
flann_algorithm_t getIndexType() const { return algorithm; }
|
||||
|
||||
void print() const
|
||||
{
|
||||
logger.info("Index type: %d\n",(int)algorithm);
|
||||
logger.info("Filename: %s\n", filename.c_str());
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class Index {
|
||||
NNIndex<T>* nnIndex;
|
||||
bool built;
|
||||
|
||||
public:
|
||||
Index(const Matrix<T>& features, const IndexParams& params);
|
||||
|
||||
~Index();
|
||||
|
||||
void buildIndex();
|
||||
|
||||
void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
|
||||
|
||||
int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params);
|
||||
|
||||
void save(std::string filename);
|
||||
|
||||
int veclen() const;
|
||||
|
||||
int size() const;
|
||||
|
||||
NNIndex<T>* getIndex() { return nnIndex; }
|
||||
|
||||
const IndexParams* getIndexParameters() { return nnIndex->getParameters(); }
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const string& filename)
|
||||
{
|
||||
FILE* fin = fopen(filename.c_str(), "rb");
|
||||
if (fin==NULL) {
|
||||
return NULL;
|
||||
}
|
||||
IndexHeader header = load_header(fin);
|
||||
if (header.data_type!=Datatype<T>::type()) {
|
||||
throw FLANNException("Datatype of saved index is different than of the one to be created.");
|
||||
}
|
||||
if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) {
|
||||
throw FLANNException("The index saved belongs to a different dataset");
|
||||
}
|
||||
|
||||
IndexParams* params = ParamsFactory::instance().create(header.index_type);
|
||||
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
|
||||
nnIndex->loadIndex(fin);
|
||||
fclose(fin);
|
||||
|
||||
return nnIndex;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params)
|
||||
{
|
||||
flann_algorithm_t index_type = params.getIndexType();
|
||||
built = false;
|
||||
|
||||
if (index_type==SAVED) {
|
||||
nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename);
|
||||
built = true;
|
||||
}
|
||||
else {
|
||||
nnIndex = create_index_by_type(dataset, params);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Index<T>::~Index()
|
||||
{
|
||||
delete nnIndex;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::buildIndex()
|
||||
{
|
||||
if (!built) {
|
||||
nnIndex->buildIndex();
|
||||
built = true;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
|
||||
{
|
||||
if (!built) {
|
||||
throw FLANNException("You must build the index before searching.");
|
||||
}
|
||||
assert(queries.cols==nnIndex->veclen());
|
||||
assert(indices.rows>=queries.rows);
|
||||
assert(dists.rows>=queries.rows);
|
||||
assert(int(indices.cols)>=knn);
|
||||
assert(int(dists.cols)>=knn);
|
||||
|
||||
KNNResultSet<T> resultSet(knn);
|
||||
|
||||
for (size_t i = 0; i < queries.rows; i++) {
|
||||
T* target = queries[i];
|
||||
resultSet.init(target, queries.cols);
|
||||
|
||||
nnIndex->findNeighbors(resultSet, target, searchParams);
|
||||
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
float* distances = resultSet.getDistances();
|
||||
memcpy(indices[i], neighbors, knn*sizeof(int));
|
||||
memcpy(dists[i], distances, knn*sizeof(float));
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams)
|
||||
{
|
||||
if (!built) {
|
||||
throw FLANNException("You must build the index before searching.");
|
||||
}
|
||||
if (query.rows!=1) {
|
||||
fprintf(stderr, "I can only search one feature at a time for range search\n");
|
||||
return -1;
|
||||
}
|
||||
assert(query.cols==nnIndex->veclen());
|
||||
|
||||
RadiusResultSet<T> resultSet(radius);
|
||||
resultSet.init(query.data, query.cols);
|
||||
nnIndex->findNeighbors(resultSet,query.data,searchParams);
|
||||
|
||||
// TODO: optimise here
|
||||
int* neighbors = resultSet.getNeighbors();
|
||||
float* distances = resultSet.getDistances();
|
||||
size_t count_nn = min(resultSet.size(), indices.cols);
|
||||
|
||||
assert (dists.cols>=count_nn);
|
||||
|
||||
for (size_t i=0;i<count_nn;++i) {
|
||||
indices[0][i] = neighbors[i];
|
||||
dists[0][i] = distances[i];
|
||||
}
|
||||
|
||||
return count_nn;
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
void Index<T>::save(string filename)
|
||||
{
|
||||
FILE* fout = fopen(filename.c_str(), "wb");
|
||||
if (fout==NULL) {
|
||||
throw FLANNException("Cannot open file");
|
||||
}
|
||||
save_header(fout, *nnIndex);
|
||||
nnIndex->saveIndex(fout);
|
||||
fclose(fout);
|
||||
}
|
||||
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::size() const
|
||||
{
|
||||
return nnIndex->size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
int Index<T>::veclen() const
|
||||
{
|
||||
return nnIndex->veclen();
|
||||
}
|
||||
|
||||
|
||||
template <typename ELEM_TYPE, typename DIST_TYPE>
|
||||
int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)
|
||||
{
|
||||
KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params);
|
||||
kmeans.buildIndex();
|
||||
|
||||
int clusterNum = kmeans.getClusterCenters(centers);
|
||||
return clusterNum;
|
||||
}
|
||||
|
||||
} // namespace cvflann
|
||||
#endif /* FLANN_HPP_ */
|
||||
Reference in New Issue
Block a user