Updated FLANN to version 1.5
This commit is contained in:
@@ -3985,6 +3985,5 @@ public:
|
||||
|
||||
#include "opencv2/core/operations.hpp"
|
||||
#include "opencv2/core/mat.hpp"
|
||||
#include "opencv2/core/flann.hpp" // FLANN (Fast Library for Approximate Nearest Neighbors)
|
||||
|
||||
#endif /*__OPENCV_CORE_HPP__*/
|
||||
|
||||
@@ -1,220 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_CORE_FLANN_HPP__
|
||||
#define __OPENCV_CORE_FLANN_HPP__
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
namespace cvflann
|
||||
{
|
||||
class Index;
|
||||
}
|
||||
|
||||
namespace cv {
|
||||
|
||||
namespace flann {
|
||||
|
||||
/* Nearest neighbor index algorithms */
|
||||
enum flann_algorithm_t {
|
||||
LINEAR = 0,
|
||||
KDTREE = 1,
|
||||
KMEANS = 2,
|
||||
COMPOSITE = 3,
|
||||
SAVED = 254,
|
||||
AUTOTUNED = 255
|
||||
};
|
||||
|
||||
enum flann_centers_init_t {
|
||||
CENTERS_RANDOM = 0,
|
||||
CENTERS_GONZALES = 1,
|
||||
CENTERS_KMEANSPP = 2
|
||||
};
|
||||
|
||||
|
||||
enum flann_log_level_t {
|
||||
LOG_NONE = 0,
|
||||
LOG_FATAL = 1,
|
||||
LOG_ERROR = 2,
|
||||
LOG_WARN = 3,
|
||||
LOG_INFO = 4
|
||||
};
|
||||
|
||||
enum flann_distance_t {
|
||||
EUCLIDEAN = 1,
|
||||
MANHATTAN = 2,
|
||||
MINKOWSKI = 3
|
||||
};
|
||||
|
||||
class CV_EXPORTS IndexFactory
|
||||
{
|
||||
public:
|
||||
virtual ~IndexFactory() {}
|
||||
virtual ::cvflann::Index* createIndex(const Mat& dataset) const = 0;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS IndexParams : public IndexFactory {
|
||||
protected:
|
||||
IndexParams() {};
|
||||
|
||||
};
|
||||
|
||||
struct CV_EXPORTS LinearIndexParams : public IndexParams {
|
||||
LinearIndexParams() {};
|
||||
|
||||
::cvflann::Index* createIndex(const Mat& dataset) const;
|
||||
};
|
||||
|
||||
|
||||
|
||||
struct CV_EXPORTS KDTreeIndexParams : public IndexParams {
|
||||
KDTreeIndexParams(int trees_ = 4) : trees(trees_) {};
|
||||
|
||||
int trees; // number of randomized trees to use (for kdtree)
|
||||
|
||||
::cvflann::Index* createIndex(const Mat& dataset) const;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS KMeansIndexParams : public IndexParams {
|
||||
KMeansIndexParams(int branching_ = 32, int iterations_ = 11,
|
||||
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
|
||||
branching(branching_),
|
||||
iterations(iterations_),
|
||||
centers_init(centers_init_),
|
||||
cb_index(cb_index_) {};
|
||||
|
||||
int branching; // branching factor (for kmeans tree)
|
||||
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
|
||||
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
|
||||
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
||||
|
||||
::cvflann::Index* createIndex(const Mat& dataset) const;
|
||||
};
|
||||
|
||||
|
||||
struct CV_EXPORTS CompositeIndexParams : public IndexParams {
|
||||
CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
|
||||
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
|
||||
trees(trees_),
|
||||
branching(branching_),
|
||||
iterations(iterations_),
|
||||
centers_init(centers_init_),
|
||||
cb_index(cb_index_) {};
|
||||
|
||||
int trees; // number of randomized trees to use (for kdtree)
|
||||
int branching; // branching factor (for kmeans tree)
|
||||
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
|
||||
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
|
||||
float cb_index; // cluster boundary index. Used when searching the kmeans tree
|
||||
|
||||
::cvflann::Index* createIndex(const Mat& dataset) const;
|
||||
};
|
||||
|
||||
|
||||
struct CV_EXPORTS AutotunedIndexParams : public IndexParams {
|
||||
AutotunedIndexParams( float target_precision_ = 0.9, float build_weight_ = 0.01,
|
||||
float memory_weight_ = 0, float sample_fraction_ = 0.1) :
|
||||
target_precision(target_precision_),
|
||||
build_weight(build_weight_),
|
||||
memory_weight(memory_weight_),
|
||||
sample_fraction(sample_fraction_) {};
|
||||
|
||||
float target_precision; // precision desired (used for autotuning, -1 otherwise)
|
||||
float build_weight; // build tree time weighting factor
|
||||
float memory_weight; // index memory weighting factor
|
||||
float sample_fraction; // what fraction of the dataset to use for autotuning
|
||||
|
||||
::cvflann::Index* createIndex(const Mat& dataset) const;
|
||||
};
|
||||
|
||||
|
||||
struct CV_EXPORTS SavedIndexParams : public IndexParams {
|
||||
SavedIndexParams() {}
|
||||
SavedIndexParams(std::string filename_) : filename(filename_) {}
|
||||
|
||||
std::string filename; // filename of the stored index
|
||||
|
||||
::cvflann::Index* createIndex(const Mat& dataset) const;
|
||||
};
|
||||
|
||||
|
||||
struct CV_EXPORTS SearchParams {
|
||||
SearchParams(int checks_ = 32) :
|
||||
checks(checks_) {};
|
||||
|
||||
int checks;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class CV_EXPORTS Index {
|
||||
::cvflann::Index* nnIndex;
|
||||
|
||||
public:
|
||||
Index(const Mat& features, const IndexParams& params);
|
||||
|
||||
~Index();
|
||||
|
||||
void knnSearch(const vector<float>& queries, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& params);
|
||||
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params);
|
||||
|
||||
int radiusSearch(const vector<float>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& params);
|
||||
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& params);
|
||||
|
||||
void save(std::string filename);
|
||||
|
||||
int veclen() const;
|
||||
|
||||
int size() const;
|
||||
};
|
||||
|
||||
|
||||
CV_EXPORTS int hierarchicalClustering(const Mat& features, Mat& centers,
|
||||
const KMeansIndexParams& params);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif
|
||||
Reference in New Issue
Block a user