Updated FLANN to version 1.5

This commit is contained in:
Marius Muja
2010-10-12 19:47:50 +00:00
parent 3230073b9b
commit 16b1f61c83
60 changed files with 2134 additions and 3685 deletions

View File

@@ -1,3 +1,3 @@
include_directories("${CMAKE_CURRENT_SOURCE_DIR}/../../3rdparty/include")
set(deps opencv_lapack zlib flann)
set(deps opencv_lapack zlib)
define_opencv_module(core ${deps})

View File

@@ -3985,6 +3985,5 @@ public:
#include "opencv2/core/operations.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/core/flann.hpp" // FLANN (Fast Library for Approximate Nearest Neighbors)
#endif /*__OPENCV_CORE_HPP__*/

View File

@@ -1,220 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_FLANN_HPP__
#define __OPENCV_CORE_FLANN_HPP__
#ifdef __cplusplus
namespace cvflann
{
class Index;
}
namespace cv {
namespace flann {
/* Nearest neighbor index algorithms */
enum flann_algorithm_t {
LINEAR = 0,
KDTREE = 1,
KMEANS = 2,
COMPOSITE = 3,
SAVED = 254,
AUTOTUNED = 255
};
enum flann_centers_init_t {
CENTERS_RANDOM = 0,
CENTERS_GONZALES = 1,
CENTERS_KMEANSPP = 2
};
enum flann_log_level_t {
LOG_NONE = 0,
LOG_FATAL = 1,
LOG_ERROR = 2,
LOG_WARN = 3,
LOG_INFO = 4
};
enum flann_distance_t {
EUCLIDEAN = 1,
MANHATTAN = 2,
MINKOWSKI = 3
};
class CV_EXPORTS IndexFactory
{
public:
virtual ~IndexFactory() {}
virtual ::cvflann::Index* createIndex(const Mat& dataset) const = 0;
};
struct CV_EXPORTS IndexParams : public IndexFactory {
protected:
IndexParams() {};
};
struct CV_EXPORTS LinearIndexParams : public IndexParams {
LinearIndexParams() {};
::cvflann::Index* createIndex(const Mat& dataset) const;
};
struct CV_EXPORTS KDTreeIndexParams : public IndexParams {
KDTreeIndexParams(int trees_ = 4) : trees(trees_) {};
int trees; // number of randomized trees to use (for kdtree)
::cvflann::Index* createIndex(const Mat& dataset) const;
};
struct CV_EXPORTS KMeansIndexParams : public IndexParams {
KMeansIndexParams(int branching_ = 32, int iterations_ = 11,
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
branching(branching_),
iterations(iterations_),
centers_init(centers_init_),
cb_index(cb_index_) {};
int branching; // branching factor (for kmeans tree)
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
float cb_index; // cluster boundary index. Used when searching the kmeans tree
::cvflann::Index* createIndex(const Mat& dataset) const;
};
struct CV_EXPORTS CompositeIndexParams : public IndexParams {
CompositeIndexParams(int trees_ = 4, int branching_ = 32, int iterations_ = 11,
flann_centers_init_t centers_init_ = CENTERS_RANDOM, float cb_index_ = 0.2 ) :
trees(trees_),
branching(branching_),
iterations(iterations_),
centers_init(centers_init_),
cb_index(cb_index_) {};
int trees; // number of randomized trees to use (for kdtree)
int branching; // branching factor (for kmeans tree)
int iterations; // max iterations to perform in one kmeans clustering (kmeans tree)
flann_centers_init_t centers_init; // algorithm used for picking the initial cluster centers for kmeans tree
float cb_index; // cluster boundary index. Used when searching the kmeans tree
::cvflann::Index* createIndex(const Mat& dataset) const;
};
struct CV_EXPORTS AutotunedIndexParams : public IndexParams {
AutotunedIndexParams( float target_precision_ = 0.9, float build_weight_ = 0.01,
float memory_weight_ = 0, float sample_fraction_ = 0.1) :
target_precision(target_precision_),
build_weight(build_weight_),
memory_weight(memory_weight_),
sample_fraction(sample_fraction_) {};
float target_precision; // precision desired (used for autotuning, -1 otherwise)
float build_weight; // build tree time weighting factor
float memory_weight; // index memory weighting factor
float sample_fraction; // what fraction of the dataset to use for autotuning
::cvflann::Index* createIndex(const Mat& dataset) const;
};
struct CV_EXPORTS SavedIndexParams : public IndexParams {
SavedIndexParams() {}
SavedIndexParams(std::string filename_) : filename(filename_) {}
std::string filename; // filename of the stored index
::cvflann::Index* createIndex(const Mat& dataset) const;
};
struct CV_EXPORTS SearchParams {
SearchParams(int checks_ = 32) :
checks(checks_) {};
int checks;
};
class CV_EXPORTS Index {
::cvflann::Index* nnIndex;
public:
Index(const Mat& features, const IndexParams& params);
~Index();
void knnSearch(const vector<float>& queries, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& params);
int radiusSearch(const vector<float>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& params);
void save(std::string filename);
int veclen() const;
int size() const;
};
CV_EXPORTS int hierarchicalClustering(const Mat& features, Mat& centers,
const KMeansIndexParams& params);
}
}
#endif // __cplusplus
#endif

View File

@@ -1,211 +0,0 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
#include "precomp.hpp"
#include "flann/flann.hpp"
namespace cv
{
namespace flann {
::cvflann::Index* LinearIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::cvflann::Matrix class so it can be constructed with a const float*
::cvflann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::cvflann::Index(mat, ::cvflann::LinearIndexParams());
}
::cvflann::Index* KDTreeIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::cvflann::Matrix class so it can be constructed with a const float*
::cvflann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::cvflann::Index(mat, ::cvflann::KDTreeIndexParams(trees));
}
::cvflann::Index* KMeansIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::cvflann::Matrix class so it can be constructed with a const float*
::cvflann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::cvflann::Index(mat, ::cvflann::KMeansIndexParams(branching,iterations, (::flann_centers_init_t)centers_init, cb_index));
}
::cvflann::Index* CompositeIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::cvflann::Matrix class so it can be constructed with a const float*
::cvflann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::cvflann::Index(mat, ::cvflann::CompositeIndexParams(trees, branching, iterations, (::flann_centers_init_t)centers_init, cb_index));
}
::cvflann::Index* AutotunedIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::cvflann::Matrix class so it can be constructed with a const float*
::cvflann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::cvflann::Index(mat, ::cvflann::AutotunedIndexParams(target_precision, build_weight, memory_weight, sample_fraction));
}
::cvflann::Index* SavedIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::cvflann::Matrix class so it can be constructed with a const float*
::cvflann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::cvflann::Index(mat, ::cvflann::SavedIndexParams(filename));
}
Index::Index(const Mat& dataset, const IndexParams& params)
{
nnIndex = params.createIndex(dataset);
}
Index::~Index()
{
delete nnIndex;
}
void Index::knnSearch(const vector<float>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& searchParams)
{
::cvflann::Matrix<float> m_query(1, (int)query.size(), (float*)&query[0]);
::cvflann::Matrix<int> m_indices(1, (int)indices.size(), &indices[0]);
::cvflann::Matrix<float> m_dists(1, (int)dists.size(), &dists[0]);
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,::cvflann::SearchParams(searchParams.checks));
}
void Index::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& searchParams)
{
CV_Assert(queries.type() == CV_32F);
CV_Assert(queries.isContinuous());
::cvflann::Matrix<float> m_queries(queries.rows, queries.cols, (float*)queries.ptr<float>(0));
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices(indices.rows, indices.cols, (int*)indices.ptr<int>(0));
CV_Assert(dists.type() == CV_32F);
CV_Assert(dists.isContinuous());
::cvflann::Matrix<float> m_dists(dists.rows, dists.cols, (float*)dists.ptr<float>(0));
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn,::cvflann::SearchParams(searchParams.checks));
}
int Index::radiusSearch(const vector<float>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& searchParams)
{
::cvflann::Matrix<float> m_query(1, (int)query.size(), (float*)&query[0]);
::cvflann::Matrix<int> m_indices(1, (int)indices.size(), &indices[0]);
::cvflann::Matrix<float> m_dists(1, (int)dists.size(), &dists[0]);
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,::cvflann::SearchParams(searchParams.checks));
}
int Index::radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& searchParams)
{
CV_Assert(query.type() == CV_32F);
CV_Assert(query.isContinuous());
::cvflann::Matrix<float> m_query(query.rows, query.cols, (float*)query.ptr<float>(0));
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices(indices.rows, indices.cols, (int*)indices.ptr<int>(0));
CV_Assert(dists.type() == CV_32F);
CV_Assert(dists.isContinuous());
::cvflann::Matrix<float> m_dists(dists.rows, dists.cols, (float*)dists.ptr<float>(0));
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,::cvflann::SearchParams(searchParams.checks));
}
void Index::save(string filename)
{
nnIndex->save(filename);
}
int Index::size() const
{
return nnIndex->size();
}
int Index::veclen() const
{
return nnIndex->veclen();
}
int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params)
{
CV_Assert(features.type() == CV_32F);
CV_Assert(features.isContinuous());
::cvflann::Matrix<float> m_features(features.rows, features.cols, (float*)features.ptr<float>(0));
CV_Assert(features.type() == CV_32F);
CV_Assert(features.isContinuous());
::cvflann::Matrix<float> m_centers(centers.rows, centers.cols, (float*)centers.ptr<float>(0));
return ::cvflann::hierarchicalClustering(m_features, m_centers, ::cvflann::KMeansIndexParams(params.branching, params.iterations,
(::flann_centers_init_t)params.centers_init, params.cb_index));
}
}
}