refactored HoughLines (converted it into Algorithm)
This commit is contained in:
parent
48fb8c4f8a
commit
1652540a1f
@ -86,13 +86,14 @@ PERF_TEST_P(Image, HoughLinesP, testing::Values(std::string("im1_1280x800.jpg"))
|
|||||||
{
|
{
|
||||||
cv::gpu::GpuMat d_image(image);
|
cv::gpu::GpuMat d_image(image);
|
||||||
cv::gpu::GpuMat d_lines;
|
cv::gpu::GpuMat d_lines;
|
||||||
cv::gpu::HoughLinesBuf d_buf;
|
|
||||||
|
|
||||||
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
|
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
|
||||||
|
|
||||||
|
hough->detect(d_image, d_lines);
|
||||||
|
|
||||||
TEST_CYCLE()
|
TEST_CYCLE()
|
||||||
{
|
{
|
||||||
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
|
hough->detect(d_image, d_lines);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
|
@ -220,18 +220,82 @@ inline void Canny(InputArray dx, InputArray dy, OutputArray edges, double low_th
|
|||||||
|
|
||||||
/////////////////////////// Hough Transform ////////////////////////////
|
/////////////////////////// Hough Transform ////////////////////////////
|
||||||
|
|
||||||
struct HoughLinesBuf
|
//////////////////////////////////////
|
||||||
|
// HoughLines
|
||||||
|
|
||||||
|
class CV_EXPORTS HoughLinesDetector : public Algorithm
|
||||||
{
|
{
|
||||||
GpuMat accum;
|
public:
|
||||||
GpuMat list;
|
virtual void detect(InputArray src, OutputArray lines) = 0;
|
||||||
|
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0;
|
||||||
|
|
||||||
|
virtual void setRho(float rho) = 0;
|
||||||
|
virtual float getRho() const = 0;
|
||||||
|
|
||||||
|
virtual void setTheta(float theta) = 0;
|
||||||
|
virtual float getTheta() const = 0;
|
||||||
|
|
||||||
|
virtual void setThreshold(int threshold) = 0;
|
||||||
|
virtual int getThreshold() const = 0;
|
||||||
|
|
||||||
|
virtual void setDoSort(bool doSort) = 0;
|
||||||
|
virtual bool getDoSort() const = 0;
|
||||||
|
|
||||||
|
virtual void setMaxLines(int maxLines) = 0;
|
||||||
|
virtual int getMaxLines() const = 0;
|
||||||
};
|
};
|
||||||
|
|
||||||
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
||||||
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
|
|
||||||
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
// obsolete
|
||||||
|
|
||||||
|
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold,
|
||||||
|
bool doSort = false, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
|
||||||
|
|
||||||
|
inline void HoughLines(InputArray src, OutputArray lines, float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||||
|
{
|
||||||
|
gpu::createHoughLinesDetector(rho, theta, threshold, doSort, maxLines)->detect(src, lines);
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////
|
||||||
|
// HoughLinesP
|
||||||
|
|
||||||
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
//! finds line segments in the black-n-white image using probabalistic Hough transform
|
||||||
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
|
class CV_EXPORTS HoughSegmentDetector : public Algorithm
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
virtual void detect(InputArray src, OutputArray lines) = 0;
|
||||||
|
|
||||||
|
virtual void setRho(float rho) = 0;
|
||||||
|
virtual float getRho() const = 0;
|
||||||
|
|
||||||
|
virtual void setTheta(float theta) = 0;
|
||||||
|
virtual float getTheta() const = 0;
|
||||||
|
|
||||||
|
virtual void setMinLineLength(int minLineLength) = 0;
|
||||||
|
virtual int getMinLineLength() const = 0;
|
||||||
|
|
||||||
|
virtual void setMaxLineGap(int maxLineGap) = 0;
|
||||||
|
virtual int getMaxLineGap() const = 0;
|
||||||
|
|
||||||
|
virtual void setMaxLines(int maxLines) = 0;
|
||||||
|
virtual int getMaxLines() const = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);
|
||||||
|
|
||||||
|
// obsolete
|
||||||
|
|
||||||
|
__OPENCV_GPUIMGPROC_DEPR_BEFORE__ void HoughLinesP(InputArray src, OutputArray lines,
|
||||||
|
float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096) __OPENCV_GPUIMGPROC_DEPR_AFTER__;
|
||||||
|
|
||||||
|
inline void HoughLinesP(InputArray src, OutputArray lines, float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
|
||||||
|
{
|
||||||
|
gpu::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap, maxLines)->detect(src, lines);
|
||||||
|
}
|
||||||
|
|
||||||
|
//////////////////////////////////////
|
||||||
|
// HoughCircles
|
||||||
|
|
||||||
struct HoughCirclesBuf
|
struct HoughCirclesBuf
|
||||||
{
|
{
|
||||||
@ -245,6 +309,9 @@ CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, flo
|
|||||||
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
|
||||||
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
|
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
|
||||||
|
|
||||||
|
//////////////////////////////////////
|
||||||
|
// GeneralizedHough
|
||||||
|
|
||||||
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
||||||
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
||||||
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
||||||
|
@ -103,9 +103,10 @@ PERF_TEST_P(Sz, HoughLines,
|
|||||||
{
|
{
|
||||||
const cv::gpu::GpuMat d_src(src);
|
const cv::gpu::GpuMat d_src(src);
|
||||||
cv::gpu::GpuMat d_lines;
|
cv::gpu::GpuMat d_lines;
|
||||||
cv::gpu::HoughLinesBuf d_buf;
|
|
||||||
|
|
||||||
TEST_CYCLE() cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold);
|
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
|
||||||
|
|
||||||
|
TEST_CYCLE() hough->detect(d_src, d_lines);
|
||||||
|
|
||||||
cv::Mat gpu_lines(d_lines.row(0));
|
cv::Mat gpu_lines(d_lines.row(0));
|
||||||
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
|
cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
|
||||||
@ -151,9 +152,10 @@ PERF_TEST_P(Image, HoughLinesP,
|
|||||||
{
|
{
|
||||||
const cv::gpu::GpuMat d_mask(mask);
|
const cv::gpu::GpuMat d_mask(mask);
|
||||||
cv::gpu::GpuMat d_lines;
|
cv::gpu::GpuMat d_lines;
|
||||||
cv::gpu::HoughLinesBuf d_buf;
|
|
||||||
|
|
||||||
TEST_CYCLE() cv::gpu::HoughLinesP(d_mask, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap);
|
cv::Ptr<cv::gpu::HoughSegmentDetector> hough = cv::gpu::createHoughSegmentDetector(rho, theta, minLineLenght, maxLineGap);
|
||||||
|
|
||||||
|
TEST_CYCLE() hough->detect(d_mask, d_lines);
|
||||||
|
|
||||||
cv::Mat gpu_lines(d_lines);
|
cv::Mat gpu_lines(d_lines);
|
||||||
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();
|
cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();
|
||||||
|
@ -47,11 +47,9 @@ using namespace cv::gpu;
|
|||||||
|
|
||||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||||
|
|
||||||
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_no_cuda(); }
|
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); }
|
||||||
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, bool, int) { throw_no_cuda(); }
|
|
||||||
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_no_cuda(); }
|
|
||||||
|
|
||||||
void cv::gpu::HoughLinesP(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, int, int) { throw_no_cuda(); }
|
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); }
|
||||||
|
|
||||||
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
|
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
|
||||||
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
|
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_no_cuda(); }
|
||||||
@ -79,7 +77,7 @@ namespace cv { namespace gpu { namespace cudev
|
|||||||
}}}
|
}}}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////
|
||||||
// HoughLines
|
// HoughLinesDetector
|
||||||
|
|
||||||
namespace cv { namespace gpu { namespace cudev
|
namespace cv { namespace gpu { namespace cudev
|
||||||
{
|
{
|
||||||
@ -90,72 +88,137 @@ namespace cv { namespace gpu { namespace cudev
|
|||||||
}
|
}
|
||||||
}}}
|
}}}
|
||||||
|
|
||||||
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
|
namespace
|
||||||
{
|
{
|
||||||
HoughLinesBuf buf;
|
class HoughLinesDetectorImpl : public HoughLinesDetector
|
||||||
HoughLines(src, lines, buf, rho, theta, threshold, doSort, maxLines);
|
{
|
||||||
|
public:
|
||||||
|
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) :
|
||||||
|
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void detect(InputArray src, OutputArray lines);
|
||||||
|
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
||||||
|
|
||||||
|
void setRho(float rho) { rho_ = rho; }
|
||||||
|
float getRho() const { return rho_; }
|
||||||
|
|
||||||
|
void setTheta(float theta) { theta_ = theta; }
|
||||||
|
float getTheta() const { return theta_; }
|
||||||
|
|
||||||
|
void setThreshold(int threshold) { threshold_ = threshold; }
|
||||||
|
int getThreshold() const { return threshold_; }
|
||||||
|
|
||||||
|
void setDoSort(bool doSort) { doSort_ = doSort; }
|
||||||
|
bool getDoSort() const { return doSort_; }
|
||||||
|
|
||||||
|
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||||||
|
int getMaxLines() const { return maxLines_; }
|
||||||
|
|
||||||
|
void write(FileStorage& fs) const
|
||||||
|
{
|
||||||
|
fs << "name" << "HoughLinesDetector_GPU"
|
||||||
|
<< "rho" << rho_
|
||||||
|
<< "theta" << theta_
|
||||||
|
<< "threshold" << threshold_
|
||||||
|
<< "doSort" << doSort_
|
||||||
|
<< "maxLines" << maxLines_;
|
||||||
|
}
|
||||||
|
|
||||||
|
void read(const FileNode& fn)
|
||||||
|
{
|
||||||
|
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" );
|
||||||
|
rho_ = (float)fn["rho"];
|
||||||
|
theta_ = (float)fn["theta"];
|
||||||
|
threshold_ = (int)fn["threshold"];
|
||||||
|
doSort_ = (int)fn["doSort"] != 0;
|
||||||
|
maxLines_ = (int)fn["maxLines"];
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
float rho_;
|
||||||
|
float theta_;
|
||||||
|
int threshold_;
|
||||||
|
bool doSort_;
|
||||||
|
int maxLines_;
|
||||||
|
|
||||||
|
GpuMat accum_;
|
||||||
|
GpuMat list_;
|
||||||
|
GpuMat result_;
|
||||||
|
};
|
||||||
|
|
||||||
|
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::cudev::hough;
|
||||||
|
|
||||||
|
GpuMat src = _src.getGpuMat();
|
||||||
|
|
||||||
|
CV_Assert( src.type() == CV_8UC1 );
|
||||||
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||||
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||||
|
|
||||||
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||||||
|
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||||||
|
|
||||||
|
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||||
|
if (pointsCount == 0)
|
||||||
|
{
|
||||||
|
lines.release();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int numangle = cvRound(CV_PI / theta_);
|
||||||
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||||||
|
CV_Assert( numangle > 0 && numrho > 0 );
|
||||||
|
|
||||||
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||||||
|
accum_.setTo(Scalar::all(0));
|
||||||
|
|
||||||
|
DeviceInfo devInfo;
|
||||||
|
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||||
|
|
||||||
|
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_);
|
||||||
|
|
||||||
|
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_);
|
||||||
|
|
||||||
|
if (linesCount == 0)
|
||||||
|
{
|
||||||
|
lines.release();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
result_.cols = linesCount;
|
||||||
|
result_.copyTo(lines);
|
||||||
|
}
|
||||||
|
|
||||||
|
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes)
|
||||||
|
{
|
||||||
|
GpuMat d_lines = _d_lines.getGpuMat();
|
||||||
|
|
||||||
|
if (d_lines.empty())
|
||||||
|
{
|
||||||
|
h_lines.release();
|
||||||
|
if (h_votes.needed())
|
||||||
|
h_votes.release();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 );
|
||||||
|
|
||||||
|
d_lines.row(0).download(h_lines);
|
||||||
|
|
||||||
|
if (h_votes.needed())
|
||||||
|
{
|
||||||
|
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1));
|
||||||
|
d_votes.download(h_votes);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
|
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||||
{
|
{
|
||||||
using namespace cv::gpu::cudev::hough;
|
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines);
|
||||||
|
|
||||||
CV_Assert(src.type() == CV_8UC1);
|
|
||||||
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
|
|
||||||
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
|
|
||||||
|
|
||||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list);
|
|
||||||
unsigned int* srcPoints = buf.list.ptr<unsigned int>();
|
|
||||||
|
|
||||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
|
||||||
if (pointsCount == 0)
|
|
||||||
{
|
|
||||||
lines.release();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const int numangle = cvRound(CV_PI / theta);
|
|
||||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
|
||||||
CV_Assert(numangle > 0 && numrho > 0);
|
|
||||||
|
|
||||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum);
|
|
||||||
buf.accum.setTo(Scalar::all(0));
|
|
||||||
|
|
||||||
DeviceInfo devInfo;
|
|
||||||
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
|
||||||
|
|
||||||
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines);
|
|
||||||
|
|
||||||
int linesCount = linesGetResult_gpu(buf.accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort);
|
|
||||||
if (linesCount > 0)
|
|
||||||
lines.cols = linesCount;
|
|
||||||
else
|
|
||||||
lines.release();
|
|
||||||
}
|
|
||||||
|
|
||||||
void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, OutputArray h_votes_)
|
|
||||||
{
|
|
||||||
if (d_lines.empty())
|
|
||||||
{
|
|
||||||
h_lines_.release();
|
|
||||||
if (h_votes_.needed())
|
|
||||||
h_votes_.release();
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
CV_Assert(d_lines.rows == 2 && d_lines.type() == CV_32FC2);
|
|
||||||
|
|
||||||
h_lines_.create(1, d_lines.cols, CV_32FC2);
|
|
||||||
Mat h_lines = h_lines_.getMat();
|
|
||||||
d_lines.row(0).download(h_lines);
|
|
||||||
|
|
||||||
if (h_votes_.needed())
|
|
||||||
{
|
|
||||||
h_votes_.create(1, d_lines.cols, CV_32SC1);
|
|
||||||
Mat h_votes = h_votes_.getMat();
|
|
||||||
GpuMat d_votes(1, d_lines.cols, CV_32SC1, const_cast<int*>(d_lines.ptr<int>(1)));
|
|
||||||
d_votes.download(h_votes);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////
|
||||||
@ -169,42 +232,113 @@ namespace cv { namespace gpu { namespace cudev
|
|||||||
}
|
}
|
||||||
}}}
|
}}}
|
||||||
|
|
||||||
void cv::gpu::HoughLinesP(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
|
namespace
|
||||||
{
|
{
|
||||||
using namespace cv::gpu::cudev::hough;
|
class PHoughLinesDetectorImpl : public HoughSegmentDetector
|
||||||
|
|
||||||
CV_Assert( src.type() == CV_8UC1 );
|
|
||||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
|
||||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
|
||||||
|
|
||||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list);
|
|
||||||
unsigned int* srcPoints = buf.list.ptr<unsigned int>();
|
|
||||||
|
|
||||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
|
||||||
if (pointsCount == 0)
|
|
||||||
{
|
{
|
||||||
lines.release();
|
public:
|
||||||
return;
|
PHoughLinesDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) :
|
||||||
|
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines)
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
void detect(InputArray src, OutputArray lines);
|
||||||
|
|
||||||
|
void setRho(float rho) { rho_ = rho; }
|
||||||
|
float getRho() const { return rho_; }
|
||||||
|
|
||||||
|
void setTheta(float theta) { theta_ = theta; }
|
||||||
|
float getTheta() const { return theta_; }
|
||||||
|
|
||||||
|
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; }
|
||||||
|
int getMinLineLength() const { return minLineLength_; }
|
||||||
|
|
||||||
|
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; }
|
||||||
|
int getMaxLineGap() const { return maxLineGap_; }
|
||||||
|
|
||||||
|
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||||||
|
int getMaxLines() const { return maxLines_; }
|
||||||
|
|
||||||
|
void write(FileStorage& fs) const
|
||||||
|
{
|
||||||
|
fs << "name" << "PHoughLinesDetector_GPU"
|
||||||
|
<< "rho" << rho_
|
||||||
|
<< "theta" << theta_
|
||||||
|
<< "minLineLength" << minLineLength_
|
||||||
|
<< "maxLineGap" << maxLineGap_
|
||||||
|
<< "maxLines" << maxLines_;
|
||||||
|
}
|
||||||
|
|
||||||
|
void read(const FileNode& fn)
|
||||||
|
{
|
||||||
|
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_GPU" );
|
||||||
|
rho_ = (float)fn["rho"];
|
||||||
|
theta_ = (float)fn["theta"];
|
||||||
|
minLineLength_ = (int)fn["minLineLength"];
|
||||||
|
maxLineGap_ = (int)fn["maxLineGap"];
|
||||||
|
maxLines_ = (int)fn["maxLines"];
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
float rho_;
|
||||||
|
float theta_;
|
||||||
|
int minLineLength_;
|
||||||
|
int maxLineGap_;
|
||||||
|
int maxLines_;
|
||||||
|
|
||||||
|
GpuMat accum_;
|
||||||
|
GpuMat list_;
|
||||||
|
GpuMat result_;
|
||||||
|
};
|
||||||
|
|
||||||
|
void PHoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||||||
|
{
|
||||||
|
using namespace cv::gpu::cudev::hough;
|
||||||
|
|
||||||
|
GpuMat src = _src.getGpuMat();
|
||||||
|
|
||||||
|
CV_Assert( src.type() == CV_8UC1 );
|
||||||
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||||
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||||
|
|
||||||
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||||||
|
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||||||
|
|
||||||
|
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||||
|
if (pointsCount == 0)
|
||||||
|
{
|
||||||
|
lines.release();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int numangle = cvRound(CV_PI / theta_);
|
||||||
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||||||
|
CV_Assert( numangle > 0 && numrho > 0 );
|
||||||
|
|
||||||
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||||||
|
accum_.setTo(Scalar::all(0));
|
||||||
|
|
||||||
|
DeviceInfo devInfo;
|
||||||
|
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||||
|
|
||||||
|
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_);
|
||||||
|
|
||||||
|
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_);
|
||||||
|
|
||||||
|
if (linesCount == 0)
|
||||||
|
{
|
||||||
|
lines.release();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
result_.cols = linesCount;
|
||||||
|
result_.copyTo(lines);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
const int numangle = cvRound(CV_PI / theta);
|
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
|
||||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
|
{
|
||||||
CV_Assert( numangle > 0 && numrho > 0 );
|
return new PHoughLinesDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines);
|
||||||
|
|
||||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum);
|
|
||||||
buf.accum.setTo(Scalar::all(0));
|
|
||||||
|
|
||||||
DeviceInfo devInfo;
|
|
||||||
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
|
||||||
|
|
||||||
ensureSizeIsEnough(1, maxLines, CV_32SC4, lines);
|
|
||||||
|
|
||||||
int linesCount = houghLinesProbabilistic_gpu(src, buf.accum, lines.ptr<int4>(), maxLines, rho, theta, maxLineGap, minLineLength);
|
|
||||||
|
|
||||||
if (linesCount > 0)
|
|
||||||
lines.cols = linesCount;
|
|
||||||
else
|
|
||||||
lines.release();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////
|
||||||
|
@ -94,11 +94,13 @@ GPU_TEST_P(HoughLines, Accuracy)
|
|||||||
cv::Mat src(size, CV_8UC1);
|
cv::Mat src(size, CV_8UC1);
|
||||||
generateLines(src);
|
generateLines(src);
|
||||||
|
|
||||||
|
cv::Ptr<cv::gpu::HoughLinesDetector> hough = cv::gpu::createHoughLinesDetector(rho, theta, threshold);
|
||||||
|
|
||||||
cv::gpu::GpuMat d_lines;
|
cv::gpu::GpuMat d_lines;
|
||||||
cv::gpu::HoughLines(loadMat(src, useRoi), d_lines, rho, theta, threshold);
|
hough->detect(loadMat(src, useRoi), d_lines);
|
||||||
|
|
||||||
std::vector<cv::Vec2f> lines;
|
std::vector<cv::Vec2f> lines;
|
||||||
cv::gpu::HoughLinesDownload(d_lines, lines);
|
hough->downloadResults(d_lines, lines);
|
||||||
|
|
||||||
cv::Mat dst(size, CV_8UC1);
|
cv::Mat dst(size, CV_8UC1);
|
||||||
drawLines(dst, lines);
|
drawLines(dst, lines);
|
||||||
|
@ -41,7 +41,7 @@ int main(int argc, const char* argv[])
|
|||||||
{
|
{
|
||||||
const int64 start = getTickCount();
|
const int64 start = getTickCount();
|
||||||
|
|
||||||
HoughLinesP(mask, lines_cpu, 1, CV_PI / 180, 50, 60, 5);
|
cv::HoughLinesP(mask, lines_cpu, 1, CV_PI / 180, 50, 60, 5);
|
||||||
|
|
||||||
const double timeSec = (getTickCount() - start) / getTickFrequency();
|
const double timeSec = (getTickCount() - start) / getTickFrequency();
|
||||||
cout << "CPU Time : " << timeSec * 1000 << " ms" << endl;
|
cout << "CPU Time : " << timeSec * 1000 << " ms" << endl;
|
||||||
@ -56,11 +56,12 @@ int main(int argc, const char* argv[])
|
|||||||
|
|
||||||
GpuMat d_src(mask);
|
GpuMat d_src(mask);
|
||||||
GpuMat d_lines;
|
GpuMat d_lines;
|
||||||
HoughLinesBuf d_buf;
|
|
||||||
{
|
{
|
||||||
const int64 start = getTickCount();
|
const int64 start = getTickCount();
|
||||||
|
|
||||||
gpu::HoughLinesP(d_src, d_lines, d_buf, 1.0f, (float) (CV_PI / 180.0f), 50, 5);
|
Ptr<gpu::HoughSegmentDetector> hough = gpu::createHoughSegmentDetector(1.0f, (float) (CV_PI / 180.0f), 50, 5);
|
||||||
|
|
||||||
|
hough->detect(d_src, d_lines);
|
||||||
|
|
||||||
const double timeSec = (getTickCount() - start) / getTickFrequency();
|
const double timeSec = (getTickCount() - start) / getTickFrequency();
|
||||||
cout << "GPU Time : " << timeSec * 1000 << " ms" << endl;
|
cout << "GPU Time : " << timeSec * 1000 << " ms" << endl;
|
||||||
|
Loading…
x
Reference in New Issue
Block a user