HoG and Hellinger-metric preprocess for digit recognition
line breaks in fitline.py description
This commit is contained in:
parent
efe139667b
commit
1543b46383
@ -3,8 +3,19 @@ SVN and KNearest digit recognition.
|
||||
|
||||
Sample loads a dataset of handwritten digits from 'digits.png'.
|
||||
Then it trains a SVN and KNearest classifiers on it and evaluates
|
||||
their accuracy. Moment-based image deskew is used to improve
|
||||
the recognition accuracy.
|
||||
their accuracy.
|
||||
|
||||
Following preprocessing is applied to the dataset:
|
||||
- Moment-based image deskew (see deskew())
|
||||
- Digit images are split into 4 10x10 cells and 16-bin
|
||||
histogram of oriented gradients is computed for each
|
||||
cell
|
||||
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
|
||||
|
||||
|
||||
[1] R. Arandjelovic, A. Zisserman
|
||||
"Three things everyone should know to improve object retrieval"
|
||||
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
|
||||
|
||||
Usage:
|
||||
digits.py
|
||||
@ -14,17 +25,25 @@ import numpy as np
|
||||
import cv2
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from common import clock, mosaic
|
||||
from numpy.linalg import norm
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'digits.png'
|
||||
|
||||
def split2d(img, cell_size, flatten=True):
|
||||
h, w = img.shape[:2]
|
||||
sx, sy = cell_size
|
||||
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
|
||||
cells = np.array(cells)
|
||||
if flatten:
|
||||
cells = cells.reshape(-1, sy, sx)
|
||||
return cells
|
||||
|
||||
def load_digits(fn):
|
||||
print 'loading "%s" ...' % fn
|
||||
digits_img = cv2.imread(fn, 0)
|
||||
h, w = digits_img.shape
|
||||
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)]
|
||||
digits = np.array(digits).reshape(-1, SZ, SZ)
|
||||
digits = split2d(digits_img, (SZ, SZ))
|
||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||||
return digits, labels
|
||||
|
||||
@ -92,6 +111,31 @@ def evaluate_model(model, digits, samples, labels):
|
||||
vis.append(img)
|
||||
return mosaic(25, vis)
|
||||
|
||||
def preprocess_simple(digits):
|
||||
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
||||
|
||||
def preprocess_hog(digits):
|
||||
samples = []
|
||||
for img in digits:
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
bin_n = 16
|
||||
bin = np.int32(bin_n*ang/(2*np.pi))
|
||||
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists)
|
||||
|
||||
# transform to Hellinger kernel
|
||||
eps = 1e-7
|
||||
hist /= hist.sum() + eps
|
||||
hist = np.sqrt(hist)
|
||||
hist /= norm(hist) + eps
|
||||
|
||||
samples.append(hist)
|
||||
return np.float32(samples)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print __doc__
|
||||
@ -100,13 +144,13 @@ if __name__ == '__main__':
|
||||
|
||||
print 'preprocessing...'
|
||||
# shuffle digits
|
||||
rand = np.random.RandomState(12345)
|
||||
rand = np.random.RandomState(321)
|
||||
shuffle = rand.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
|
||||
digits2 = map(deskew, digits)
|
||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
||||
|
||||
samples = preprocess_hog(digits2)
|
||||
|
||||
train_n = int(0.9*len(samples))
|
||||
cv2.imshow('test set', mosaic(25, digits[train_n:]))
|
||||
digits_train, digits_test = np.split(digits2, [train_n])
|
||||
@ -115,13 +159,13 @@ if __name__ == '__main__':
|
||||
|
||||
|
||||
print 'training KNearest...'
|
||||
model = KNearest(k=1)
|
||||
model = KNearest(k=4)
|
||||
model.train(samples_train, labels_train)
|
||||
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
cv2.imshow('KNearest test', vis)
|
||||
|
||||
print 'training SVM...'
|
||||
model = SVM(C=4.66, gamma=0.08)
|
||||
model = SVM(C=2.67, gamma=5.383)
|
||||
model.train(samples_train, labels_train)
|
||||
vis = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
cv2.imshow('SVM test', vis)
|
||||
|
@ -76,7 +76,7 @@ class App(object):
|
||||
shuffle = np.random.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
digits2 = map(deskew, digits)
|
||||
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
|
||||
samples = preprocess_hog(digits2)
|
||||
return samples, labels
|
||||
|
||||
def get_dataset(self):
|
||||
@ -95,8 +95,8 @@ class App(object):
|
||||
return ires
|
||||
|
||||
def adjust_SVM(self):
|
||||
Cs = np.logspace(0, 5, 10, base=2)
|
||||
gammas = np.logspace(-7, -2, 10, base=2)
|
||||
Cs = np.logspace(0, 10, 15, base=2)
|
||||
gammas = np.logspace(-7, 4, 15, base=2)
|
||||
scores = np.zeros((len(Cs), len(gammas)))
|
||||
scores[:] = np.nan
|
||||
|
||||
@ -114,6 +114,9 @@ class App(object):
|
||||
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
|
||||
print scores
|
||||
|
||||
print 'writing score table to "svm_scores.npz"'
|
||||
np.savez('svm_scores.npz', scores=scores, Cs=Cs, gammas=gammas)
|
||||
|
||||
i, j = np.unravel_index(scores.argmin(), scores.shape)
|
||||
best_params = dict(C = Cs[i], gamma=gammas[j])
|
||||
print 'best params:', best_params
|
||||
@ -142,7 +145,6 @@ if __name__ == '__main__':
|
||||
|
||||
print __doc__
|
||||
|
||||
|
||||
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'svm')
|
||||
|
@ -1,10 +1,10 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import digits
|
||||
import os
|
||||
import video
|
||||
from common import mosaic
|
||||
|
||||
from digits import *
|
||||
|
||||
|
||||
def main():
|
||||
@ -15,11 +15,9 @@ def main():
|
||||
print '"%s" not found, run digits.py first' % classifier_fn
|
||||
return
|
||||
|
||||
model = digits.SVM()
|
||||
model = SVM()
|
||||
model.load('digits_svm.dat')
|
||||
|
||||
SZ = 20
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
@ -55,13 +53,12 @@ def main():
|
||||
A[:,:2] = np.eye(2)*s
|
||||
A[:,2] = t
|
||||
sub1 = cv2.warpAffine(sub, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
sub1 = digits.deskew(sub1)
|
||||
sub1 = deskew(sub1)
|
||||
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
|
||||
frame[y:,x+w:][:SZ, :SZ] = sub1[...,np.newaxis]
|
||||
|
||||
sample = np.float32(sub1).reshape(1,SZ*SZ) / 255.0
|
||||
sample = preprocess_hog([sub1])
|
||||
digit = model.predict(sample)[0]
|
||||
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
|
||||
|
||||
|
@ -2,14 +2,16 @@
|
||||
Robust line fitting.
|
||||
==================
|
||||
|
||||
Example of using cv2.fitLine function for fitting line to points in presence of outliers.
|
||||
Example of using cv2.fitLine function for fitting line
|
||||
to points in presence of outliers.
|
||||
|
||||
Usage
|
||||
-----
|
||||
fitline.py
|
||||
|
||||
Switch through different M-estimator functions and see, how well the robust functions
|
||||
fit the line even in case of ~50% of outliers.
|
||||
Switch through different M-estimator functions and see,
|
||||
how well the robust functions fit the line even
|
||||
in case of ~50% of outliers.
|
||||
|
||||
Keys
|
||||
----
|
||||
|
Loading…
x
Reference in New Issue
Block a user