final refactoring and test for training
This commit is contained in:
parent
d314c602d5
commit
14ac8a528e
@ -1,7 +1,3 @@
|
||||
if(IOS OR ANDROID)
|
||||
return()
|
||||
endif()
|
||||
|
||||
set(name sft)
|
||||
set(the_target opencv_${name})
|
||||
|
||||
|
@ -108,9 +108,9 @@ void sft::write(cv::FileStorage& fs, const string&, const Config& x)
|
||||
|
||||
void sft::read(const cv::FileNode& node, Config& x, const Config& default_value)
|
||||
{
|
||||
if(node.empty())
|
||||
x = default_value;
|
||||
else
|
||||
x = default_value;
|
||||
|
||||
if(!node.empty())
|
||||
x.read(node);
|
||||
}
|
||||
|
||||
|
@ -40,27 +40,16 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <sft/fpool.hpp>
|
||||
#include <sft/dataset.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#include <iostream>
|
||||
#include <queue>
|
||||
|
||||
// ============ Dataset ============ //
|
||||
namespace {
|
||||
using namespace sft;
|
||||
|
||||
string itoa(long i)
|
||||
{
|
||||
char s[65];
|
||||
sprintf(s, "%ld", i);
|
||||
return std::string(s);
|
||||
}
|
||||
|
||||
}
|
||||
inline std::string itoa(long i) { return cv::format("%ld", i); }
|
||||
|
||||
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
||||
|
||||
#include <glob.h>
|
||||
# include <glob.h>
|
||||
|
||||
namespace {
|
||||
using namespace sft;
|
||||
@ -84,7 +73,7 @@ void glob(const string& path, svector& ret)
|
||||
}
|
||||
#else
|
||||
|
||||
#include <windows.h>
|
||||
# include <windows.h>
|
||||
namespace {
|
||||
using namespace sft;
|
||||
void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
|
||||
@ -138,7 +127,6 @@ void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
|
||||
ScaledDataset::ScaledDataset(const string& path, const int oct)
|
||||
{
|
||||
dprintf("%s\n", "get dataset file names...");
|
||||
|
||||
dprintf("%s\n", "Positives globing...");
|
||||
|
||||
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
@ -44,6 +44,7 @@
|
||||
#define __SFT_COMMON_HPP__
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/softcascade/softcascade.hpp>
|
||||
|
||||
namespace sft
|
||||
{
|
||||
@ -58,7 +59,7 @@ namespace sft
|
||||
}
|
||||
|
||||
// used for noisy printfs
|
||||
#define WITH_DEBUG_OUT
|
||||
//#define WITH_DEBUG_OUT
|
||||
|
||||
#if defined WITH_DEBUG_OUT
|
||||
# include <stdio.h>
|
||||
|
@ -75,9 +75,7 @@ struct Config
|
||||
|
||||
string resPath(ivector::const_iterator it) const
|
||||
{
|
||||
char s[65];
|
||||
sprintf(s, "%d", *it);
|
||||
return std::string(cascadeName) + s + ".xml";
|
||||
return cv::format("%s%d.xml",cascadeName.c_str(), *it);
|
||||
}
|
||||
|
||||
// Paths to a rescaled data
|
||||
|
@ -44,10 +44,6 @@
|
||||
#define __SFT_OCTAVE_HPP__
|
||||
|
||||
#include <sft/common.hpp>
|
||||
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/softcascade/softcascade.hpp>
|
||||
namespace sft
|
||||
{
|
||||
|
@ -44,7 +44,7 @@
|
||||
|
||||
#include <sft/common.hpp>
|
||||
#include <iostream>
|
||||
#include <sft/fpool.hpp>
|
||||
#include <sft/dataset.hpp>
|
||||
#include <sft/config.hpp>
|
||||
|
||||
#include <opencv2/core/core_c.h>
|
||||
|
@ -1251,7 +1251,7 @@ protected:
|
||||
virtual void write_params( CvFileStorage* fs ) const;
|
||||
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
|
||||
|
||||
virtual void initial_weights(double (&p)[2]);
|
||||
virtual void initialize_weights(double (&p)[2]);
|
||||
|
||||
CvDTreeTrainData* data;
|
||||
CvBoostParams params;
|
||||
|
@ -1115,7 +1115,7 @@ bool CvBoost::train( CvMLData* _data,
|
||||
return result;
|
||||
}
|
||||
|
||||
void CvBoost::initial_weights(double (&p)[2])
|
||||
void CvBoost::initialize_weights(double (&p)[2])
|
||||
{
|
||||
p[0] = 1.;
|
||||
p[1] = 1.;
|
||||
@ -1166,7 +1166,7 @@ CvBoost::update_weights( CvBoostTree* tree )
|
||||
|
||||
double w0 = 1./ n;
|
||||
double p[2] = { 1., 1. };
|
||||
initial_weights(p);
|
||||
initialize_weights(p);
|
||||
|
||||
cvReleaseMat( &orig_response );
|
||||
cvReleaseMat( &sum_response );
|
||||
|
@ -114,4 +114,27 @@ struct Random
|
||||
|
||||
#endif
|
||||
|
||||
#if defined _WIN32 && (_WIN32 || _WIN64)
|
||||
# if _WIN64
|
||||
# define USE_LONG_SEEDS
|
||||
# endif
|
||||
#endif
|
||||
#if defined (__GNUC__) &&__GNUC__
|
||||
# if defined(__x86_64__) || defined(__ppc64__)
|
||||
# define USE_LONG_SEEDS
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined USE_LONG_SEEDS
|
||||
# define FEATURE_RECT_SEED 8854342234LU
|
||||
# define INDEX_ENGINE_SEED 764224349868LU
|
||||
#else
|
||||
# define FEATURE_RECT_SEED 88543422LU
|
||||
# define INDEX_ENGINE_SEED 76422434LU
|
||||
#endif
|
||||
#undef USE_LONG_SEEDS
|
||||
|
||||
#define DCHANNELS_SEED 314152314LU
|
||||
#define DX_DY_SEED 65633343LU
|
||||
|
||||
#endif
|
@ -41,7 +41,6 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "_random.hpp"
|
||||
|
||||
namespace {
|
||||
|
||||
@ -199,25 +198,6 @@ void ChannelFeaturePool::write( cv::FileStorage& fs, int index) const
|
||||
fs << pool[index];
|
||||
}
|
||||
|
||||
#if defined _WIN32 && (_WIN32 || _WIN64)
|
||||
# if _WIN64
|
||||
# define USE_LONG_SEEDS
|
||||
# endif
|
||||
#endif
|
||||
#if defined (__GNUC__) &&__GNUC__
|
||||
# if defined(__x86_64__) || defined(__ppc64__)
|
||||
# define USE_LONG_SEEDS
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined USE_LONG_SEEDS
|
||||
# define FEATURE_RECT_SEED 8854342234LU
|
||||
#else
|
||||
# define FEATURE_RECT_SEED 88543422LU
|
||||
#endif
|
||||
# define DCHANNELS_SEED 314152314LU
|
||||
#undef USE_LONG_SEEDS
|
||||
|
||||
void ChannelFeaturePool::fill(int desired)
|
||||
{
|
||||
int mw = model.width;
|
||||
@ -226,8 +206,6 @@ void ChannelFeaturePool::fill(int desired)
|
||||
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS;
|
||||
|
||||
int nfeatures = std::min(desired, maxPoolSize);
|
||||
// dprintf("Requeste feature pool %d max %d suggested %d\n", desired, maxPoolSize, nfeatures);
|
||||
|
||||
pool.reserve(nfeatures);
|
||||
|
||||
sft::Random::engine eng(FEATURE_RECT_SEED);
|
||||
@ -262,7 +240,6 @@ void ChannelFeaturePool::fill(int desired)
|
||||
if (std::find(pool.begin(), pool.end(),f) == pool.end())
|
||||
{
|
||||
pool.push_back(f);
|
||||
std::cout << f << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -53,7 +53,6 @@
|
||||
#include "opencv2/core/core_c.h"
|
||||
#include "opencv2/core/internal.hpp"
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include "_random.hpp"
|
||||
|
||||
#endif
|
||||
|
@ -43,17 +43,6 @@
|
||||
#include "precomp.hpp"
|
||||
#include <queue>
|
||||
#include <string>
|
||||
#include "_random.hpp"
|
||||
|
||||
#define WITH_DEBUG_OUT
|
||||
|
||||
#if defined WITH_DEBUG_OUT
|
||||
# include <stdio.h>
|
||||
# define dprintf(format, ...) printf(format, ##__VA_ARGS__)
|
||||
#else
|
||||
# define dprintf(format, ...)
|
||||
#endif
|
||||
|
||||
|
||||
using cv::Dataset;
|
||||
using cv::FeaturePool;
|
||||
@ -90,7 +79,7 @@ protected:
|
||||
float predict( const Mat& _sample, const cv::Range range) const;
|
||||
private:
|
||||
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
|
||||
virtual void initial_weights(double (&p)[2]);
|
||||
virtual void initialize_weights(double (&p)[2]);
|
||||
|
||||
int logScale;
|
||||
cv::Rect boundingBox;
|
||||
@ -159,8 +148,6 @@ bool BoostedSoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat&
|
||||
|
||||
void BoostedSoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
|
||||
{
|
||||
dprintf("set thresholds according to DBP strategy\n");
|
||||
|
||||
// labels decided by classifier
|
||||
cv::Mat desisions(responses.cols, responses.rows, responses.type());
|
||||
float* dptr = desisions.ptr<float>(0);
|
||||
@ -223,33 +210,10 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
|
||||
|
||||
if (++total >= npositives) break;
|
||||
}
|
||||
|
||||
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total);
|
||||
|
||||
npositives = total;
|
||||
nnegatives = cvRound(nnegatives * total / (double)npositives);
|
||||
}
|
||||
|
||||
#if defined _WIN32 && (_WIN32 || _WIN64)
|
||||
# if _WIN64
|
||||
# define USE_LONG_SEEDS
|
||||
# endif
|
||||
#endif
|
||||
#if defined (__GNUC__) &&__GNUC__
|
||||
# if defined(__x86_64__) || defined(__ppc64__)
|
||||
# define USE_LONG_SEEDS
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined USE_LONG_SEEDS
|
||||
# define INDEX_ENGINE_SEED 764224349868LU
|
||||
#else
|
||||
# define INDEX_ENGINE_SEED 76422434LU
|
||||
#endif
|
||||
# define DX_DY_SEED 65633343LU
|
||||
#undef USE_LONG_SEEDS
|
||||
|
||||
|
||||
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
|
||||
{
|
||||
// ToDo: set seed, use offsets
|
||||
@ -285,15 +249,12 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
|
||||
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
||||
_builder(frame, channels);
|
||||
|
||||
dprintf("generated %d %d\n", dx, dy);
|
||||
// // if (predict(sum))
|
||||
{
|
||||
responses.ptr<float>(i)[0] = 0.f;
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
||||
}
|
||||
|
||||
|
||||
@ -390,7 +351,7 @@ void BoostedSoftCascadeOctave::write( cv::FileStorage &fso, const FeaturePool* p
|
||||
<< "}";
|
||||
}
|
||||
|
||||
void BoostedSoftCascadeOctave::initial_weights(double (&p)[2])
|
||||
void BoostedSoftCascadeOctave::initialize_weights(double (&p)[2])
|
||||
{
|
||||
double n = data->sample_count;
|
||||
p[0] = n / (2. * (double)(nnegatives));
|
||||
|
246
modules/softcascade/test/test_training.cpp
Normal file
246
modules/softcascade/test/test_training.cpp
Normal file
@ -0,0 +1,246 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and / or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined(ANDROID)
|
||||
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
||||
# include <glob.h>
|
||||
#else
|
||||
# include <windows.h>
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace {
|
||||
|
||||
typedef vector<string> svector;
|
||||
class ScaledDataset : public cv::Dataset
|
||||
{
|
||||
public:
|
||||
ScaledDataset(const string& path, const int octave);
|
||||
|
||||
virtual cv::Mat get(SampleType type, int idx) const;
|
||||
virtual int available(SampleType type) const;
|
||||
virtual ~ScaledDataset();
|
||||
|
||||
private:
|
||||
svector pos;
|
||||
svector neg;
|
||||
};
|
||||
|
||||
string itoa(long i)
|
||||
{
|
||||
char s[65];
|
||||
sprintf(s, "%ld", i);
|
||||
return std::string(s);
|
||||
}
|
||||
|
||||
|
||||
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
||||
|
||||
void glob(const string& path, svector& ret)
|
||||
{
|
||||
glob_t glob_result;
|
||||
glob(path.c_str(), GLOB_TILDE, 0, &glob_result);
|
||||
|
||||
ret.clear();
|
||||
ret.reserve(glob_result.gl_pathc);
|
||||
|
||||
for(unsigned int i = 0; i < glob_result.gl_pathc; ++i)
|
||||
{
|
||||
ret.push_back(std::string(glob_result.gl_pathv[i]));
|
||||
}
|
||||
|
||||
globfree(&glob_result);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
|
||||
{
|
||||
std::string strFilePath; // File path
|
||||
std::string strExtension; // Extension
|
||||
|
||||
std::string strPattern = refRoot + "\\*.*";
|
||||
|
||||
WIN32_FIND_DATA FileInformation; // File information
|
||||
HANDLE hFile = ::FindFirstFile(strPattern.c_str(), &FileInformation);
|
||||
|
||||
if(hFile == INVALID_HANDLE_VALUE)
|
||||
CV_Error(CV_StsBadArg, "Your dataset search path is incorrect");
|
||||
|
||||
do
|
||||
{
|
||||
if(FileInformation.cFileName[0] != '.')
|
||||
{
|
||||
strFilePath.erase();
|
||||
strFilePath = refRoot + "\\" + FileInformation.cFileName;
|
||||
|
||||
if( !(FileInformation.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) )
|
||||
{
|
||||
// Check extension
|
||||
strExtension = FileInformation.cFileName;
|
||||
strExtension = strExtension.substr(strExtension.rfind(".") + 1);
|
||||
|
||||
if(strExtension == refExt)
|
||||
// Save filename
|
||||
refvecFiles.push_back(strFilePath);
|
||||
}
|
||||
}
|
||||
}
|
||||
while(::FindNextFile(hFile, &FileInformation) == TRUE);
|
||||
|
||||
// Close handle
|
||||
::FindClose(hFile);
|
||||
|
||||
DWORD dwError = ::GetLastError();
|
||||
if(dwError != ERROR_NO_MORE_FILES)
|
||||
CV_Error(CV_StsBadArg, "Your dataset search path is incorrect");
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
ScaledDataset::ScaledDataset(const string& path, const int oct)
|
||||
{
|
||||
|
||||
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
||||
glob(path + "/pos/octave_" + itoa(oct) + "/*.png", pos);
|
||||
#else
|
||||
glob(path + "/pos/octave_" + itoa(oct), "png", pos);
|
||||
#endif
|
||||
|
||||
#if !defined (_WIN32) && ! defined(__MINGW32__)
|
||||
glob(path + "/neg/octave_" + itoa(oct) + "/*.png", neg);
|
||||
#else
|
||||
glob(path + "/neg/octave_" + itoa(oct), "png", neg);
|
||||
#endif
|
||||
|
||||
// Check: files not empty
|
||||
CV_Assert(pos.size() != size_t(0));
|
||||
CV_Assert(neg.size() != size_t(0));
|
||||
}
|
||||
|
||||
cv::Mat ScaledDataset::get(SampleType type, int idx) const
|
||||
{
|
||||
const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx];
|
||||
return cv::imread(src);
|
||||
}
|
||||
|
||||
int ScaledDataset::available(SampleType type) const
|
||||
{
|
||||
return (int)((type == POSITIVE)? pos.size():neg.size());
|
||||
}
|
||||
|
||||
ScaledDataset::~ScaledDataset(){}
|
||||
|
||||
}
|
||||
|
||||
TEST(DISABLED_SoftCascade, training)
|
||||
{
|
||||
// // 2. check and open output file
|
||||
string outXmlPath = cv::tempfile(".xml");
|
||||
cv::FileStorage fso(outXmlPath, cv::FileStorage::WRITE);
|
||||
|
||||
ASSERT_TRUE(fso.isOpened());
|
||||
|
||||
std::vector<int> octaves;
|
||||
{
|
||||
octaves.push_back(-1);
|
||||
octaves.push_back(0);
|
||||
}
|
||||
|
||||
fso << "regression-cascade"
|
||||
<< "{"
|
||||
<< "stageType" << "BOOST"
|
||||
<< "featureType" << "ICF"
|
||||
<< "octavesNum" << 2
|
||||
<< "width" << 64
|
||||
<< "height" << 128
|
||||
<< "shrinkage" << 4
|
||||
<< "octaves" << "[";
|
||||
|
||||
for (std::vector<int>::const_iterator it = octaves.begin(); it != octaves.end(); ++it)
|
||||
{
|
||||
int nfeatures = 100;
|
||||
int shrinkage = 4;
|
||||
float octave = powf(2.f, (float)(*it));
|
||||
cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage );
|
||||
|
||||
cv::Ptr<cv::FeaturePool> pool = cv::FeaturePool::create(model, nfeatures);
|
||||
nfeatures = pool->size();
|
||||
int npositives = 20;
|
||||
int nnegatives = 40;
|
||||
|
||||
cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave),
|
||||
cvRound(64 * octave), cvRound(128 * octave));
|
||||
|
||||
typedef cv::SoftCascadeOctave Octave;
|
||||
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
|
||||
|
||||
std::string path = cvtest::TS::ptr()->get_data_path() + "softcascade/sample_training_set";
|
||||
ScaledDataset dataset(path, *it);
|
||||
|
||||
if (boost->train(&dataset, pool, 3, 2))
|
||||
{
|
||||
cv::Mat thresholds;
|
||||
boost->setRejectThresholds(thresholds);
|
||||
boost->write(fso, pool, thresholds);
|
||||
}
|
||||
}
|
||||
|
||||
fso << "]" << "}";
|
||||
fso.release();
|
||||
|
||||
|
||||
cv::FileStorage actual(outXmlPath, cv::FileStorage::READ);
|
||||
cv::FileNode root = actual.getFirstTopLevelNode();
|
||||
|
||||
cv::FileNode fn = root["octaves"];
|
||||
ASSERT_FALSE(fn.empty());
|
||||
}
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user