final refactoring and test for training

This commit is contained in:
marina.kolpakova 2013-01-30 13:34:34 +04:00
parent d314c602d5
commit 14ac8a528e
14 changed files with 287 additions and 102 deletions

View File

@ -1,7 +1,3 @@
if(IOS OR ANDROID)
return()
endif()
set(name sft)
set(the_target opencv_${name})

View File

@ -108,9 +108,9 @@ void sft::write(cv::FileStorage& fs, const string&, const Config& x)
void sft::read(const cv::FileNode& node, Config& x, const Config& default_value)
{
if(node.empty())
x = default_value;
else
x = default_value;
if(!node.empty())
x.read(node);
}

View File

@ -40,27 +40,16 @@
//
//M*/
#include <sft/fpool.hpp>
#include <sft/dataset.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <queue>
// ============ Dataset ============ //
namespace {
using namespace sft;
string itoa(long i)
{
char s[65];
sprintf(s, "%ld", i);
return std::string(s);
}
}
inline std::string itoa(long i) { return cv::format("%ld", i); }
#if !defined (_WIN32) && ! defined(__MINGW32__)
#include <glob.h>
# include <glob.h>
namespace {
using namespace sft;
@ -84,7 +73,7 @@ void glob(const string& path, svector& ret)
}
#else
#include <windows.h>
# include <windows.h>
namespace {
using namespace sft;
void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
@ -138,7 +127,6 @@ void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
ScaledDataset::ScaledDataset(const string& path, const int oct)
{
dprintf("%s\n", "get dataset file names...");
dprintf("%s\n", "Positives globing...");
#if !defined (_WIN32) && ! defined(__MINGW32__)

View File

@ -44,6 +44,7 @@
#define __SFT_COMMON_HPP__
#include <opencv2/core/core.hpp>
#include <opencv2/softcascade/softcascade.hpp>
namespace sft
{
@ -58,7 +59,7 @@ namespace sft
}
// used for noisy printfs
#define WITH_DEBUG_OUT
//#define WITH_DEBUG_OUT
#if defined WITH_DEBUG_OUT
# include <stdio.h>

View File

@ -75,9 +75,7 @@ struct Config
string resPath(ivector::const_iterator it) const
{
char s[65];
sprintf(s, "%d", *it);
return std::string(cascadeName) + s + ".xml";
return cv::format("%s%d.xml",cascadeName.c_str(), *it);
}
// Paths to a rescaled data

View File

@ -44,10 +44,6 @@
#define __SFT_OCTAVE_HPP__
#include <sft/common.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/softcascade/softcascade.hpp>
namespace sft
{

View File

@ -44,7 +44,7 @@
#include <sft/common.hpp>
#include <iostream>
#include <sft/fpool.hpp>
#include <sft/dataset.hpp>
#include <sft/config.hpp>
#include <opencv2/core/core_c.h>

View File

@ -1251,7 +1251,7 @@ protected:
virtual void write_params( CvFileStorage* fs ) const;
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
virtual void initial_weights(double (&p)[2]);
virtual void initialize_weights(double (&p)[2]);
CvDTreeTrainData* data;
CvBoostParams params;

View File

@ -1115,7 +1115,7 @@ bool CvBoost::train( CvMLData* _data,
return result;
}
void CvBoost::initial_weights(double (&p)[2])
void CvBoost::initialize_weights(double (&p)[2])
{
p[0] = 1.;
p[1] = 1.;
@ -1166,7 +1166,7 @@ CvBoost::update_weights( CvBoostTree* tree )
double w0 = 1./ n;
double p[2] = { 1., 1. };
initial_weights(p);
initialize_weights(p);
cvReleaseMat( &orig_response );
cvReleaseMat( &sum_response );

View File

@ -114,4 +114,27 @@ struct Random
#endif
#if defined _WIN32 && (_WIN32 || _WIN64)
# if _WIN64
# define USE_LONG_SEEDS
# endif
#endif
#if defined (__GNUC__) &&__GNUC__
# if defined(__x86_64__) || defined(__ppc64__)
# define USE_LONG_SEEDS
# endif
#endif
#if defined USE_LONG_SEEDS
# define FEATURE_RECT_SEED 8854342234LU
# define INDEX_ENGINE_SEED 764224349868LU
#else
# define FEATURE_RECT_SEED 88543422LU
# define INDEX_ENGINE_SEED 76422434LU
#endif
#undef USE_LONG_SEEDS
#define DCHANNELS_SEED 314152314LU
#define DX_DY_SEED 65633343LU
#endif

View File

@ -41,7 +41,6 @@
//M*/
#include "precomp.hpp"
#include "_random.hpp"
namespace {
@ -199,25 +198,6 @@ void ChannelFeaturePool::write( cv::FileStorage& fs, int index) const
fs << pool[index];
}
#if defined _WIN32 && (_WIN32 || _WIN64)
# if _WIN64
# define USE_LONG_SEEDS
# endif
#endif
#if defined (__GNUC__) &&__GNUC__
# if defined(__x86_64__) || defined(__ppc64__)
# define USE_LONG_SEEDS
# endif
#endif
#if defined USE_LONG_SEEDS
# define FEATURE_RECT_SEED 8854342234LU
#else
# define FEATURE_RECT_SEED 88543422LU
#endif
# define DCHANNELS_SEED 314152314LU
#undef USE_LONG_SEEDS
void ChannelFeaturePool::fill(int desired)
{
int mw = model.width;
@ -226,8 +206,6 @@ void ChannelFeaturePool::fill(int desired)
int maxPoolSize = (mw -1) * mw / 2 * (mh - 1) * mh / 2 * N_CHANNELS;
int nfeatures = std::min(desired, maxPoolSize);
// dprintf("Requeste feature pool %d max %d suggested %d\n", desired, maxPoolSize, nfeatures);
pool.reserve(nfeatures);
sft::Random::engine eng(FEATURE_RECT_SEED);
@ -262,7 +240,6 @@ void ChannelFeaturePool::fill(int desired)
if (std::find(pool.begin(), pool.end(),f) == pool.end())
{
pool.push_back(f);
std::cout << f << std::endl;
}
}
}

View File

@ -53,7 +53,6 @@
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/opencv_modules.hpp"
#include "_random.hpp"
#endif

View File

@ -43,17 +43,6 @@
#include "precomp.hpp"
#include <queue>
#include <string>
#include "_random.hpp"
#define WITH_DEBUG_OUT
#if defined WITH_DEBUG_OUT
# include <stdio.h>
# define dprintf(format, ...) printf(format, ##__VA_ARGS__)
#else
# define dprintf(format, ...)
#endif
using cv::Dataset;
using cv::FeaturePool;
@ -90,7 +79,7 @@ protected:
float predict( const Mat& _sample, const cv::Range range) const;
private:
void traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const;
virtual void initial_weights(double (&p)[2]);
virtual void initialize_weights(double (&p)[2]);
int logScale;
cv::Rect boundingBox;
@ -159,8 +148,6 @@ bool BoostedSoftCascadeOctave::train( const cv::Mat& _trainData, const cv::Mat&
void BoostedSoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
{
dprintf("set thresholds according to DBP strategy\n");
// labels decided by classifier
cv::Mat desisions(responses.cols, responses.rows, responses.type());
float* dptr = desisions.ptr<float>(0);
@ -223,33 +210,10 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
if (++total >= npositives) break;
}
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total);
npositives = total;
nnegatives = cvRound(nnegatives * total / (double)npositives);
}
#if defined _WIN32 && (_WIN32 || _WIN64)
# if _WIN64
# define USE_LONG_SEEDS
# endif
#endif
#if defined (__GNUC__) &&__GNUC__
# if defined(__x86_64__) || defined(__ppc64__)
# define USE_LONG_SEEDS
# endif
#endif
#if defined USE_LONG_SEEDS
# define INDEX_ENGINE_SEED 764224349868LU
#else
# define INDEX_ENGINE_SEED 76422434LU
#endif
# define DX_DY_SEED 65633343LU
#undef USE_LONG_SEEDS
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
{
// ToDo: set seed, use offsets
@ -285,15 +249,12 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
_builder(frame, channels);
dprintf("generated %d %d\n", dx, dy);
// // if (predict(sum))
{
responses.ptr<float>(i)[0] = 0.f;
++i;
}
}
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
}
@ -390,7 +351,7 @@ void BoostedSoftCascadeOctave::write( cv::FileStorage &fso, const FeaturePool* p
<< "}";
}
void BoostedSoftCascadeOctave::initial_weights(double (&p)[2])
void BoostedSoftCascadeOctave::initialize_weights(double (&p)[2])
{
double n = data->sample_count;
p[0] = n / (2. * (double)(nnegatives));

View File

@ -0,0 +1,246 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and / or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined(ANDROID)
#include <string>
#include <fstream>
#include <vector>
#include "test_precomp.hpp"
#if !defined (_WIN32) && ! defined(__MINGW32__)
# include <glob.h>
#else
# include <windows.h>
#endif
using namespace std;
namespace {
typedef vector<string> svector;
class ScaledDataset : public cv::Dataset
{
public:
ScaledDataset(const string& path, const int octave);
virtual cv::Mat get(SampleType type, int idx) const;
virtual int available(SampleType type) const;
virtual ~ScaledDataset();
private:
svector pos;
svector neg;
};
string itoa(long i)
{
char s[65];
sprintf(s, "%ld", i);
return std::string(s);
}
#if !defined (_WIN32) && ! defined(__MINGW32__)
void glob(const string& path, svector& ret)
{
glob_t glob_result;
glob(path.c_str(), GLOB_TILDE, 0, &glob_result);
ret.clear();
ret.reserve(glob_result.gl_pathc);
for(unsigned int i = 0; i < glob_result.gl_pathc; ++i)
{
ret.push_back(std::string(glob_result.gl_pathv[i]));
}
globfree(&glob_result);
}
#else
void glob(const string& refRoot, const string& refExt, svector &refvecFiles)
{
std::string strFilePath; // File path
std::string strExtension; // Extension
std::string strPattern = refRoot + "\\*.*";
WIN32_FIND_DATA FileInformation; // File information
HANDLE hFile = ::FindFirstFile(strPattern.c_str(), &FileInformation);
if(hFile == INVALID_HANDLE_VALUE)
CV_Error(CV_StsBadArg, "Your dataset search path is incorrect");
do
{
if(FileInformation.cFileName[0] != '.')
{
strFilePath.erase();
strFilePath = refRoot + "\\" + FileInformation.cFileName;
if( !(FileInformation.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) )
{
// Check extension
strExtension = FileInformation.cFileName;
strExtension = strExtension.substr(strExtension.rfind(".") + 1);
if(strExtension == refExt)
// Save filename
refvecFiles.push_back(strFilePath);
}
}
}
while(::FindNextFile(hFile, &FileInformation) == TRUE);
// Close handle
::FindClose(hFile);
DWORD dwError = ::GetLastError();
if(dwError != ERROR_NO_MORE_FILES)
CV_Error(CV_StsBadArg, "Your dataset search path is incorrect");
}
#endif
ScaledDataset::ScaledDataset(const string& path, const int oct)
{
#if !defined (_WIN32) && ! defined(__MINGW32__)
glob(path + "/pos/octave_" + itoa(oct) + "/*.png", pos);
#else
glob(path + "/pos/octave_" + itoa(oct), "png", pos);
#endif
#if !defined (_WIN32) && ! defined(__MINGW32__)
glob(path + "/neg/octave_" + itoa(oct) + "/*.png", neg);
#else
glob(path + "/neg/octave_" + itoa(oct), "png", neg);
#endif
// Check: files not empty
CV_Assert(pos.size() != size_t(0));
CV_Assert(neg.size() != size_t(0));
}
cv::Mat ScaledDataset::get(SampleType type, int idx) const
{
const std::string& src = (type == POSITIVE)? pos[idx]: neg[idx];
return cv::imread(src);
}
int ScaledDataset::available(SampleType type) const
{
return (int)((type == POSITIVE)? pos.size():neg.size());
}
ScaledDataset::~ScaledDataset(){}
}
TEST(DISABLED_SoftCascade, training)
{
// // 2. check and open output file
string outXmlPath = cv::tempfile(".xml");
cv::FileStorage fso(outXmlPath, cv::FileStorage::WRITE);
ASSERT_TRUE(fso.isOpened());
std::vector<int> octaves;
{
octaves.push_back(-1);
octaves.push_back(0);
}
fso << "regression-cascade"
<< "{"
<< "stageType" << "BOOST"
<< "featureType" << "ICF"
<< "octavesNum" << 2
<< "width" << 64
<< "height" << 128
<< "shrinkage" << 4
<< "octaves" << "[";
for (std::vector<int>::const_iterator it = octaves.begin(); it != octaves.end(); ++it)
{
int nfeatures = 100;
int shrinkage = 4;
float octave = powf(2.f, (float)(*it));
cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage );
cv::Ptr<cv::FeaturePool> pool = cv::FeaturePool::create(model, nfeatures);
nfeatures = pool->size();
int npositives = 20;
int nnegatives = 40;
cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave),
cvRound(64 * octave), cvRound(128 * octave));
typedef cv::SoftCascadeOctave Octave;
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
std::string path = cvtest::TS::ptr()->get_data_path() + "softcascade/sample_training_set";
ScaledDataset dataset(path, *it);
if (boost->train(&dataset, pool, 3, 2))
{
cv::Mat thresholds;
boost->setRejectThresholds(thresholds);
boost->write(fso, pool, thresholds);
}
}
fso << "]" << "}";
fso.release();
cv::FileStorage actual(outXmlPath, cv::FileStorage::READ);
cv::FileNode root = actual.getFirstTopLevelNode();
cv::FileNode fn = root["octaves"];
ASSERT_FALSE(fn.empty());
}
#endif