fixed GPU docs
This commit is contained in:
@@ -1,62 +1,6 @@
|
||||
\section{Feature Detection and Description}
|
||||
|
||||
|
||||
\cvclass{gpu::SURFParams\_GPU}
|
||||
Various SURF algorithm parameters.
|
||||
|
||||
\begin{lstlisting}
|
||||
struct SURFParams_GPU
|
||||
{
|
||||
SURFParams_GPU() :
|
||||
threshold(0.1f),
|
||||
nOctaves(4),
|
||||
nIntervals(4),
|
||||
initialScale(2.f),
|
||||
|
||||
l1(3.f/1.5f),
|
||||
l2(5.f/1.5f),
|
||||
l3(3.f/1.5f),
|
||||
l4(1.f/1.5f),
|
||||
edgeScale(0.81f),
|
||||
initialStep(1),
|
||||
|
||||
extended(true),
|
||||
|
||||
featuresRatio(0.01f)
|
||||
{
|
||||
}
|
||||
|
||||
//! The interest operator threshold
|
||||
float threshold;
|
||||
//! The number of octaves to process
|
||||
int nOctaves;
|
||||
//! The number of intervals in each octave
|
||||
int nIntervals;
|
||||
//! The scale associated with the first interval of the first octave
|
||||
float initialScale;
|
||||
|
||||
//! mask parameter l_1
|
||||
float l1;
|
||||
//! mask parameter l_2
|
||||
float l2;
|
||||
//! mask parameter l_3
|
||||
float l3;
|
||||
//! mask parameter l_4
|
||||
float l4;
|
||||
//! The amount to scale the edge rejection mask
|
||||
float edgeScale;
|
||||
//! The initial sampling step in pixels.
|
||||
int initialStep;
|
||||
|
||||
//! True, if generate 128-len descriptors, false - 64-len descriptors
|
||||
bool extended;
|
||||
|
||||
//! max features = featuresRatio * img.size().srea()
|
||||
float featuresRatio;
|
||||
};
|
||||
\end{lstlisting}
|
||||
|
||||
|
||||
\cvclass{gpu::SURF\_GPU}
|
||||
Class for extracting Speeded Up Robust Features from an image.
|
||||
|
||||
@@ -236,8 +180,8 @@ void matchSingle(const GpuMat\& queryDescs, \par const GpuMat\& trainDescs, \par
|
||||
\begin{description}
|
||||
\cvarg{queryDescs} {Query set of descriptors.}
|
||||
\cvarg{trainDescs} {Train set of descriptors. This will not be added to train descriptors collection stored in class object.}
|
||||
\cvarg{trainIdx} {One row \texttt{CV\_32SC1} matrix. Will contain the best train index for each query. If some query descriptors masked out in \texttt{mask} it will contain -1.}
|
||||
\cvarg{distance} {One row \texttt{CV\_32FC1} matrix. Will contain the best distance for each query. If some query descriptors masked out in \texttt{mask} it will contain \texttt{FLT\_MAX}.}
|
||||
\cvarg{trainIdx} {One row \texttt{CV\_32SC1} matrix. Will contain the best train index for each query. If some query descriptors are masked out in \texttt{mask} it will contain -1.}
|
||||
\cvarg{distance} {One row \texttt{CV\_32FC1} matrix. Will contain the best distance for each query. If some query descriptors are masked out in \texttt{mask} it will contain \texttt{FLT\_MAX}.}
|
||||
\cvarg{mask}{Mask specifying permissible matches between input query and train matrices of descriptors.}
|
||||
\end{description}
|
||||
|
||||
@@ -252,9 +196,9 @@ void matchCollection(const GpuMat\& queryDescs, \par const GpuMat\& trainCollect
|
||||
\begin{description}
|
||||
\cvarg{queryDescs} {Query set of descriptors.}
|
||||
\cvarg{trainCollection} {\texttt{GpuMat} containing train collection. It can be obtained from train descriptors collection that was set using \texttt{add} method by \hyperref[cppfunc.gpu.BruteForceMatcher.makeGpuCollection]{makeGpuCollection}. Or it can contain user defined collection. It must be one row matrix, each element is a \texttt{DevMem2D} that points to one train descriptors matrix.}
|
||||
\cvarg{trainIdx} {One row \texttt{CV\_32SC1} matrix. Will contain the best train index for each query. If some query descriptors masked out in \texttt{maskCollection} it will contain -1.}
|
||||
\cvarg{imgIdx} {One row \texttt{CV\_32SC1} matrix. Will contain image train index for each query. If some query descriptors masked out in \texttt{maskCollection} it will contain -1.}
|
||||
\cvarg{distance} {One row \texttt{CV\_32FC1} matrix. Will contain the best distance for each query. If some query descriptors masked out in \texttt{maskCollection} it will contain \texttt{FLT\_MAX}.}
|
||||
\cvarg{trainIdx} {One row \texttt{CV\_32SC1} matrix. Will contain the best train index for each query. If some query descriptors are masked out in \texttt{maskCollection} it will contain -1.}
|
||||
\cvarg{imgIdx} {One row \texttt{CV\_32SC1} matrix. Will contain image train index for each query. If some query descriptors are masked out in \texttt{maskCollection} it will contain -1.}
|
||||
\cvarg{distance} {One row \texttt{CV\_32FC1} matrix. Will contain the best distance for each query. If some query descriptors are masked out in \texttt{maskCollection} it will contain \texttt{FLT\_MAX}.}
|
||||
\cvarg{maskCollection}{\texttt{GpuMat} containing set of masks. It can be obtained from \texttt{std::vector<GpuMat>} by \hyperref[cppfunc.gpu.BruteForceMatcher.makeGpuCollection]{makeGpuCollection}. Or it can contain user defined mask set. It must be empty matrix or one row matrix, each element is a \texttt{PtrStep} that points to one mask.}
|
||||
\end{description}
|
||||
|
||||
@@ -299,8 +243,8 @@ void knnMatch(const GpuMat\& queryDescs, \par const GpuMat\& trainDescs, \par Gp
|
||||
\begin{description}
|
||||
\cvarg{queryDescs} {Query set of descriptors.}
|
||||
\cvarg{trainDescs} {Train set of descriptors. This will not be added to train descriptors collection stored in class object.}
|
||||
\cvarg{trainIdx} {Matrix with $\texttt{nQueries} \times \texttt{k}$ size and \texttt{CV\_32SC1} type. \texttt{trainIdx.at<int>(queryIdx, i)} will contain index of the i'th best trains. If some query descriptors masked out in \texttt{mask} it will contain -1.}
|
||||
\cvarg{distance} {Matrix with $\texttt{nQuery} \times \texttt{k}$ and \texttt{CV\_32FC1} type. Will contain distance for each query and the i'th best trains. If some query descriptors masked out in \texttt{mask} it will contain \texttt{FLT\_MAX}.}
|
||||
\cvarg{trainIdx} {Matrix with $\texttt{nQueries} \times \texttt{k}$ size and \texttt{CV\_32SC1} type. \texttt{trainIdx.at<int>(queryIdx, i)} will contain index of the i'th best trains. If some query descriptors are masked out in \texttt{mask} it will contain -1.}
|
||||
\cvarg{distance} {Matrix with $\texttt{nQuery} \times \texttt{k}$ and \texttt{CV\_32FC1} type. Will contain distance for each query and the i'th best trains. If some query descriptors are masked out in \texttt{mask} it will contain \texttt{FLT\_MAX}.}
|
||||
\cvarg{allDist} {Buffer to store all distances between query descriptors and train descriptors. It will have $\texttt{nQuery} \times \texttt{nTrain}$ size and \texttt{CV\_32FC1} type. \texttt{allDist.at<float>(queryIdx, trainIdx)} will contain \texttt{FLT\_MAX}, if \texttt{trainIdx} is one from k best, otherwise it will contain distance between \texttt{queryIdx} and \texttt{trainIdx} descriptors.}
|
||||
\cvarg{k}{Number of the best matches will be found per each query descriptor (or less if it's not possible).}
|
||||
\cvarg{mask}{Mask specifying permissible matches between input query and train matrices of descriptors.}
|
||||
|
Reference in New Issue
Block a user