Added ocl_Mog2

This commit is contained in:
Elena Gvozdeva 2014-01-27 17:32:51 +04:00
parent 84c29745f2
commit 1391ca1da5
4 changed files with 641 additions and 13 deletions

View File

@ -0,0 +1,89 @@
#include "perf_precomp.hpp"
#include "opencv2/ts/ocl_perf.hpp"
#ifdef HAVE_OPENCL
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(WIN32)
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1
#else
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0
#endif
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
namespace cvtest {
namespace ocl {
//////////////////////////// Mog2//////////////////////////
typedef tuple<string, int> VideoMOG2ParamType;
typedef TestBaseWithParam<VideoMOG2ParamType> MOG2_GetBackgroundImage;
static void cvtFrameFmt(vector<Mat>& input, vector<Mat>& output)
{
for(int i = 0; i< (int)(input.size()); i++)
{
cvtColor(input[i], output[i], COLOR_RGB2GRAY);
}
}
static void prepareData(VideoCapture& cap, int cn, vector<Mat>& frame_buffer)
{
cv::Mat frame;
std::vector<Mat> frame_buffer_init;
int nFrame = (int)frame_buffer.size();
for(int i = 0; i < nFrame; i++)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
frame_buffer_init.push_back(frame);
}
if(cn == 1)
cvtFrameFmt(frame_buffer_init, frame_buffer);
else
frame_buffer = frame_buffer_init;
}
OCL_PERF_TEST_P(MOG2_GetBackgroundImage, Mog2, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1,3)))
{
VideoMOG2ParamType params = GetParam();
const string inputFile = getDataPath(get<0>(params));
const int cn = get<1>(params);
int nFrame = 5;
vector<Mat> frame_buffer(nFrame);
cv::VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
prepareData(cap, cn, frame_buffer);
UMat u_foreground, u_background;
OCL_TEST_CYCLE()
{
Ptr<cv::BackgroundSubtractorMOG2> mog2 = createBackgroundSubtractorMOG2();
mog2->setDetectShadows(false);
u_foreground.release();
u_background.release();
for (int i = 0; i < nFrame; i++)
{
mog2->apply(frame_buffer[i], u_foreground);
}
mog2->getBackgroundImage(u_background);
}
SANITY_CHECK(u_background);
}
}}// namespace cvtest::ocl
#endif
#endif

View File

@ -83,6 +83,7 @@
///////////*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
namespace cv
{
@ -141,6 +142,8 @@ public:
fCT = defaultfCT2;
nShadowDetection = defaultnShadowDetection2;
fTau = defaultfTau;
opencl_ON = true;
}
//! the full constructor that takes the length of the history,
// the number of gaussian mixtures, the background ratio parameter and the noise strength
@ -165,6 +168,8 @@ public:
nShadowDetection = defaultnShadowDetection2;
fTau = defaultfTau;
name_ = "BackgroundSubtractor.MOG2";
opencl_ON = true;
}
//! the destructor
~BackgroundSubtractorMOG2Impl() {}
@ -184,14 +189,44 @@ public:
int nchannels = CV_MAT_CN(frameType);
CV_Assert( nchannels <= CV_CN_MAX );
// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes.create(frameSize,CV_8U);
bgmodelUsedModes = Scalar::all(0);
if (ocl::useOpenCL() && opencl_ON)
{
kernel_apply.create("mog2_kernel", ocl::video::bgfg_mog2_oclsrc, format("-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_mog2_oclsrc, format( "-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
if (kernel_apply.empty() || kernel_getBg.empty())
opencl_ON = false;
}
else opencl_ON = false;
if (opencl_ON)
{
u_weight.create(frameSize.height * nmixtures, frameSize.width, CV_32FC1);
u_weight.setTo(Scalar::all(0));
u_variance.create(frameSize.height * nmixtures, frameSize.width, CV_32FC1);
u_variance.setTo(Scalar::all(0));
if (nchannels==3)
nchannels=4;
u_mean.create(frameSize.height * nmixtures, frameSize.width, CV_32FC(nchannels)); //4 channels
u_mean.setTo(Scalar::all(0));
//make the array for keeping track of the used modes per pixel - all zeros at start
u_bgmodelUsedModes.create(frameSize, CV_32FC1);
u_bgmodelUsedModes.setTo(cv::Scalar::all(0));
}
else
{
// for each gaussian mixture of each pixel bg model we store ...
// the mixture weight (w),
// the mean (nchannels values) and
// the covariance
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
//make the array for keeping track of the used modes per pixel - all zeros at start
bgmodelUsedModes.create(frameSize,CV_8U);
bgmodelUsedModes = Scalar::all(0);
}
}
virtual AlgorithmInfo* info() const { return 0; }
@ -271,6 +306,19 @@ protected:
int frameType;
Mat bgmodel;
Mat bgmodelUsedModes;//keep track of number of modes per pixel
//for OCL
mutable bool opencl_ON;
UMat u_weight;
UMat u_variance;
UMat u_mean;
UMat u_bgmodelUsedModes;
mutable ocl::Kernel kernel_apply;
mutable ocl::Kernel kernel_getBg;
int nframes;
int history;
int nmixtures;
@ -321,6 +369,9 @@ protected:
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
String name_;
bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
bool ocl_apply(InputArray _image, OutputArray _fgmask, bool needToInitialize, double learningRate=-1);
};
struct GaussBGStatModel2Params
@ -685,14 +736,78 @@ public:
uchar shadowVal;
};
bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgmask, bool needToInitialize, double learningRate)
{
++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
CV_Assert(learningRate >= 0);
UMat fgmask(_image.size(), CV_32SC1);
fgmask.setTo(cv::Scalar::all(1));
const float alpha1 = 1.0f - learningRate;
int detectShadows_flag = 0;
if(bShadowDetection)
detectShadows_flag = 1;
UMat frame = _image.getUMat();
float varMax = MAX(fVarMin, fVarMax);
float varMin = MIN(fVarMin, fVarMax);
int idxArg = 0;
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_bgmodelUsedModes));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_weight));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_mean));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_variance));
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));
idxArg = kernel_apply.set(idxArg, (float)learningRate); //alphaT
idxArg = kernel_apply.set(idxArg, (float)alpha1);
idxArg = kernel_apply.set(idxArg, (float)(-learningRate*fCT)); //prune
idxArg = kernel_apply.set(idxArg, detectShadows_flag);
idxArg = kernel_apply.set(idxArg, (float)varThreshold); //c_Tb
idxArg = kernel_apply.set(idxArg, backgroundRatio); //c_TB
idxArg = kernel_apply.set(idxArg, varThresholdGen); //c_Tg
idxArg = kernel_apply.set(idxArg, varMin);
idxArg = kernel_apply.set(idxArg, varMax);
idxArg = kernel_apply.set(idxArg, fVarInit);
idxArg = kernel_apply.set(idxArg, fTau);
idxArg = kernel_apply.set(idxArg, nShadowDetection);
size_t globalsize[] = {frame.cols, frame.rows, 1};
if (!(kernel_apply.run(2, globalsize, NULL, true)))
return false;
_fgmask.create(_image.size(),CV_8U);
UMat temp = _fgmask.getUMat();
fgmask.convertTo(temp, CV_8U);
return true;
}
void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
Mat image = _image.getMat();
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
if( needToInitialize )
initialize(image.size(), image.type());
initialize(_image.size(), _image.type());
if (opencl_ON)
{
if (ocl_apply(_image,_fgmask, needToInitialize, learningRate))
return;
else
initialize(_image.size(), _image.type());
}
opencl_ON = false;
Mat image = _image.getMat();
_fgmask.create( image.size(), CV_8U );
Mat fgmask = _fgmask.getMat();
@ -712,8 +827,36 @@ void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask,
image.total()/(double)(1 << 16));
}
bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
{
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3);
_backgroundImage.create(frameSize, frameType);
UMat dst = _backgroundImage.getUMat();
int idxArg = 0;
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnly(u_bgmodelUsedModes));
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_weight));
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_mean));
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(dst));
idxArg = kernel_getBg.set(idxArg, backgroundRatio);
size_t globalsize[2] = {u_bgmodelUsedModes.cols, u_bgmodelUsedModes.rows};
return kernel_getBg.run(2, globalsize, NULL, false);
}
void BackgroundSubtractorMOG2Impl::getBackgroundImage(OutputArray backgroundImage) const
{
if (opencl_ON)
{
if (ocl_getBackgroundImage(backgroundImage));
return;
opencl_ON = false;
return;
}
int nchannels = CV_MAT_CN(frameType);
CV_Assert( nchannels == 3 );
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
@ -765,7 +908,6 @@ void BackgroundSubtractorMOG2Impl::getBackgroundImage(OutputArray backgroundImag
}
}
Ptr<BackgroundSubtractorMOG2> createBackgroundSubtractorMOG2(int _history, double _varThreshold,
bool _bShadowDetection)
{

View File

@ -0,0 +1,272 @@
#if CN==1
#define T_MEAN float
#define F_ZERO (0.0f)
#define cnMode 1
#define frameToMean(a, b) (b) = *(a);
#define meanToFrame(a, b) *b = convert_uchar_sat(a);
inline float sqr(float val)
{
return val * val;
}
inline float sum(float val)
{
return val;
}
#else
#define T_MEAN float4
#define F_ZERO (0.0f, 0.0f, 0.0f, 0.0f)
#define cnMode 4
#define meanToFrame(a, b)\
b[0] = convert_uchar_sat(a.x); \
b[1] = convert_uchar_sat(a.y); \
b[2] = convert_uchar_sat(a.z);
#define frameToMean(a, b)\
b.x = a[0]; \
b.y = a[1]; \
b.z = a[2]; \
b.w = 0.0f;
inline float sqr(const float4 val)
{
return val.x * val.x + val.y * val.y + val.z * val.z;
}
inline float sum(const float4 val)
{
return (val.x + val.y + val.z);
}
inline void swap4(__global float4* ptr, int x, int y, int k, int rows, int ptr_step)
{
float4 val = ptr[(k * rows + y) * ptr_step + x];
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x];
ptr[((k + 1) * rows + y) * ptr_step + x] = val;
}
#endif
inline void swap(__global float* ptr, int x, int y, int k, int rows, int ptr_step)
{
float val = ptr[(k * rows + y) * ptr_step + x];
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x];
ptr[((k + 1) * rows + y) * ptr_step + x] = val;
}
__kernel void mog2_kernel(__global const uchar* frame, int frame_step, int frame_offset, int frame_row, int frame_col, //uchar || uchar3
__global uchar* modesUsed, int modesUsed_step, int modesUsed_offset, //int
__global uchar* weight, int weight_step, int weight_offset, //float
__global uchar* mean, int mean_step, int mean_offset, //T_MEAN=float || float4
__global uchar* variance, int var_step, int var_offset, //float
__global uchar* fgmask, int fgmask_step, int fgmask_offset, //int
float alphaT, float alpha1, float prune,
int detectShadows_flag,
float c_Tb, float c_TB, float c_Tg, float c_varMin, //constants
float c_varMax, float c_varInit, float c_tau, uchar c_shadowVal)
{
int x = get_global_id(0);
int y = get_global_id(1);
weight_step/= sizeof(float);
var_step /= sizeof(float);
mean_step /= (sizeof(float)*cnMode);
if( x < frame_col && y < frame_row)
{
__global const uchar* _frame = (frame + mad24( y, frame_step, x*CN + frame_offset));
T_MEAN pix;
frameToMean(_frame, pix);
bool background = false; // true - the pixel classified as background
bool fitsPDF = false; //if it remains zero a new GMM mode will be added
__global int* _modesUsed = (__global int*)(modesUsed + mad24( y, modesUsed_step, x*(int)(sizeof(int))));
int nmodes = _modesUsed[0];
int nNewModes = nmodes; //current number of modes in GMM
float totalWeight = 0.0f;
__global float* _weight = (__global float*)(weight);
__global float* _variance = (__global float*)(variance);
__global T_MEAN* _mean = (__global T_MEAN*)(mean);
for (int mode = 0; mode < nmodes; ++mode)
{
float c_weight = alpha1 * _weight[(mode * frame_row + y) * weight_step + x] + prune;
if (!fitsPDF)
{
float c_var = _variance[(mode * frame_row + y) * var_step + x];
T_MEAN c_mean = _mean[(mode * frame_row + y) * mean_step + x];
T_MEAN diff = c_mean - pix;
float dist2 = sqr(diff);
if (totalWeight < c_TB && dist2 < c_Tb * c_var)
background = true;
if (dist2 < c_Tg * c_var)
{
fitsPDF = true;
c_weight += alphaT;
float k = alphaT / c_weight;
_mean[(mode * frame_row + y) * mean_step + x] = c_mean - k * diff;
float varnew = c_var + k * (dist2 - c_var);
varnew = fmax(varnew, c_varMin);
varnew = fmin(varnew, c_varMax);
_variance[(mode * frame_row + y) * var_step + x] = varnew;
for (int i = mode; i > 0; --i)
{
if (c_weight < _weight[((i - 1) * frame_row + y) * weight_step + x])
break;
swap(_weight, x, y, i - 1, frame_row, weight_step);
swap(_variance, x, y, i - 1, frame_row, var_step);
#if (CN==1)
swap(_mean, x, y, i - 1, frame_row, mean_step);
#else
swap4(_mean, x, y, i - 1, frame_row, mean_step);
#endif
}
}
} // !fitsPDF
if (c_weight < -prune)
{
c_weight = 0.0f;
nmodes--;
}
_weight[(mode * frame_row + y) * weight_step + x] = c_weight; //update weight by the calculated value
totalWeight += c_weight;
}
totalWeight = 1.f / totalWeight;
for (int mode = 0; mode < nmodes; ++mode)
_weight[(mode * frame_row + y) * weight_step + x] *= totalWeight;
nmodes = nNewModes;
if (!fitsPDF)
{
int mode = nmodes == (NMIXTURES) ? (NMIXTURES) - 1 : nmodes++;
if (nmodes == 1)
_weight[(mode * frame_row + y) * weight_step + x] = 1.f;
else
{
_weight[(mode * frame_row + y) * weight_step + x] = alphaT;
for (int i = 0; i < nmodes - 1; ++i)
_weight[(i * frame_row + y) * weight_step + x] *= alpha1;
}
_mean[(mode * frame_row + y) * mean_step + x] = pix;
_variance[(mode * frame_row + y) * var_step + x] = c_varInit;
for (int i = nmodes - 1; i > 0; --i)
{
if (alphaT < _weight[((i - 1) * frame_row + y) * weight_step + x])
break;
swap(_weight, x, y, i - 1, frame_row, weight_step);
swap(_variance, x, y, i - 1, frame_row, var_step);
#if (CN==1)
swap(_mean, x, y, i - 1, frame_row, mean_step);
#else
swap4(_mean, x, y, i - 1, frame_row, mean_step);
#endif
}
}
_modesUsed[0] = nmodes;
bool isShadow = false;
if (detectShadows_flag && !background)
{
float tWeight = 0.0f;
for (int mode = 0; mode < nmodes; ++mode)
{
T_MEAN c_mean = _mean[(mode * frame_row + y) * mean_step + x];
T_MEAN pix_mean = pix * c_mean;
float numerator = sum(pix_mean);
float denominator = sqr(c_mean);
if (denominator == 0)
break;
if (numerator <= denominator && numerator >= c_tau * denominator)
{
float a = numerator / denominator;
T_MEAN dD = a * c_mean - pix;
if (sqr(dD) < c_Tb * _variance[(mode * frame_row + y) * var_step + x] * a * a)
{
isShadow = true;
break;
}
}
tWeight += _weight[(mode * frame_row + y) * weight_step + x];
if (tWeight > c_TB)
break;
}
}
__global int* _fgmask = (__global int*)(fgmask + mad24(y, fgmask_step, x*(int)(sizeof(int)) + fgmask_offset));
*_fgmask = background ? 0 : isShadow ? c_shadowVal : 255;
}
}
__kernel void getBackgroundImage2_kernel(__global const uchar* modesUsed, int modesUsed_step, int modesUsed_offset, int modesUsed_row, int modesUsed_col,
__global const uchar* weight, int weight_step, int weight_offset,
__global const uchar* mean, int mean_step, int mean_offset,
__global uchar* dst, int dst_step, int dst_offset,
float c_TB)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < modesUsed_col && y < modesUsed_row)
{
__global int* _modesUsed = (__global int*)(modesUsed + mad24( y, modesUsed_step, x*(int)(sizeof(int))));
int nmodes = _modesUsed[0];
T_MEAN meanVal = (T_MEAN)F_ZERO;
float totalWeight = 0.0f;
for (int mode = 0; mode < nmodes; ++mode)
{
__global const float* _weight = (__global const float*)(weight + mad24(mode * modesUsed_row + y, weight_step, x*(int)(sizeof(float))));
float c_weight = _weight[0];
__global const T_MEAN* _mean = (__global const T_MEAN*)(mean + mad24(mode * modesUsed_row + y, mean_step, x*(int)(sizeof(float))*cnMode));
T_MEAN c_mean = _mean[0];
meanVal = meanVal + c_weight * c_mean;
totalWeight += c_weight;
if(totalWeight > c_TB)
break;
}
meanVal = meanVal * (1.f / totalWeight);
__global uchar* _dst = dst + y * dst_step + x*CN + dst_offset;
meanToFrame(meanVal, _dst);
}
}

View File

@ -0,0 +1,125 @@
#include "test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
#if defined(HAVE_XINE) || \
defined(HAVE_GSTREAMER) || \
defined(HAVE_QUICKTIME) || \
defined(HAVE_AVFOUNDATION) || \
defined(HAVE_FFMPEG) || \
defined(WIN32)
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1
#else
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0
#endif
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
namespace cvtest {
namespace ocl {
////////////////////////// MOG2///////////////////////////////////
namespace
{
IMPLEMENT_PARAM_CLASS(UseGray, bool)
IMPLEMENT_PARAM_CLASS(DetectShadow, bool)
}
PARAM_TEST_CASE(Mog2, UseGray, DetectShadow, bool)
{
bool useGray;
bool detectShadow;
bool useRoi;
virtual void SetUp()
{
useGray = GET_PARAM(0);
detectShadow = GET_PARAM(1);
useRoi = GET_PARAM(2);
}
};
OCL_TEST_P(Mog2, Update)
{
string inputFile = string(TS::ptr()->get_data_path()) + "video/768x576.avi";
VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
Ptr<BackgroundSubtractorMOG2> mog2_cpu = createBackgroundSubtractorMOG2();
Ptr<BackgroundSubtractorMOG2> mog2_ocl = createBackgroundSubtractorMOG2();
mog2_cpu->setDetectShadows(detectShadow);
mog2_ocl->setDetectShadows(detectShadow);
Mat frame, foreground;
UMat u_foreground;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
if (useGray)
{
Mat temp;
cvtColor(frame, temp, COLOR_BGR2GRAY);
swap(temp, frame);
}
OCL_OFF(mog2_cpu->apply(frame, foreground));
OCL_ON (mog2_ocl->apply(frame, u_foreground));
if (detectShadow)
EXPECT_MAT_SIMILAR(foreground, u_foreground, 15e-3)
else
EXPECT_MAT_NEAR(foreground, u_foreground, 0);
}
}
OCL_TEST_P(Mog2, getBackgroundImage)
{
if (useGray)
return;
string inputFile = string(TS::ptr()->get_data_path()) + "video/768x576.avi";
VideoCapture cap(inputFile);
ASSERT_TRUE(cap.isOpened());
Ptr<BackgroundSubtractorMOG2> mog2_cpu = createBackgroundSubtractorMOG2();
Ptr<BackgroundSubtractorMOG2> mog2_ocl = createBackgroundSubtractorMOG2();
mog2_cpu->setDetectShadows(detectShadow);
mog2_ocl->setDetectShadows(detectShadow);
Mat frame, foreground;
UMat u_foreground;
for (int i = 0; i < 10; ++i)
{
cap >> frame;
ASSERT_FALSE(frame.empty());
OCL_OFF(mog2_cpu->apply(frame, foreground));
OCL_ON (mog2_ocl->apply(frame, u_foreground));
}
Mat background;
OCL_OFF(mog2_cpu->getBackgroundImage(background));
UMat u_background;
OCL_ON (mog2_ocl->getBackgroundImage(u_background));
EXPECT_MAT_NEAR(background, u_background, 1.0);
}
OCL_INSTANTIATE_TEST_CASE_P(OCL_Video, Mog2, Combine(
Values(UseGray(true), UseGray(false)),
Values(DetectShadow(true), DetectShadow(false)),
Bool())
);
}}// namespace cvtest::ocl
#endif
#endif