"atomic bomb" commit. Reorganized OpenCV directory structure
This commit is contained in:
291
tests/cv/src/akmeans.cpp
Normal file
291
tests/cv/src/akmeans.cpp
Normal file
@@ -0,0 +1,291 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "cvtest.h"
|
||||
|
||||
#if 0
|
||||
|
||||
/* Testing parameters */
|
||||
static char test_desc[] = "KMeans clustering";
|
||||
static char* func_name[] =
|
||||
{
|
||||
"cvKMeans"
|
||||
};
|
||||
|
||||
//based on Ara Nefian's implementation
|
||||
float distance(float* vector_1, float *vector_2, int VecSize)
|
||||
{
|
||||
int i;
|
||||
float dist;
|
||||
|
||||
dist = 0.0;
|
||||
for (i = 0; i < VecSize; i++)
|
||||
{
|
||||
//printf ("%f, %f\n", vector_1[i], vector_2[i]);
|
||||
dist = dist + (vector_1[i] - vector_2[i])*(vector_1[i] - vector_2[i]);
|
||||
}
|
||||
return dist;
|
||||
}
|
||||
|
||||
//returns number of made iterations
|
||||
int _real_kmeans( int numClusters, float **sample, int numSamples,
|
||||
int VecSize, int* a_class, double eps, int iter )
|
||||
|
||||
{
|
||||
int i, k, n;
|
||||
int *counter;
|
||||
float minDist;
|
||||
float *dist;
|
||||
float **curr_cluster;
|
||||
float **prev_cluster;
|
||||
|
||||
float error;
|
||||
|
||||
//printf("* numSamples = %d, numClusters = %d, VecSize = %d\n", numSamples, numClusters, VecSize);
|
||||
|
||||
//memory allocation
|
||||
dist = new float[numClusters];
|
||||
counter = new int[numClusters];
|
||||
|
||||
//allocate memory for curr_cluster and prev_cluster
|
||||
curr_cluster = new float*[numClusters];
|
||||
prev_cluster = new float*[numClusters];
|
||||
for (k = 0; k < numClusters; k++){
|
||||
curr_cluster[k] = new float[VecSize];
|
||||
prev_cluster[k] = new float[VecSize];
|
||||
}
|
||||
|
||||
//pick initial cluster centers
|
||||
for (k = 0; k < numClusters; k++)
|
||||
{
|
||||
for (n = 0; n < VecSize; n++)
|
||||
{
|
||||
curr_cluster[k][n] = sample[k*(numSamples/numClusters)][n];
|
||||
prev_cluster[k][n] = sample[k*(numSamples/numClusters)][n];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int NumIter = 0;
|
||||
error = FLT_MAX;
|
||||
while ((error > eps) && (NumIter < iter))
|
||||
{
|
||||
NumIter++;
|
||||
//printf("NumIter = %d, error = %lf, \n", NumIter, error);
|
||||
|
||||
//assign samples to clusters
|
||||
for (i = 0; i < numSamples; i++)
|
||||
{
|
||||
for (k = 0; k < numClusters; k++)
|
||||
{
|
||||
dist[k] = distance(sample[i], curr_cluster[k], VecSize);
|
||||
}
|
||||
minDist = dist[0];
|
||||
a_class[i] = 0;
|
||||
for (k = 1; k < numClusters; k++)
|
||||
{
|
||||
if (dist[k] < minDist)
|
||||
{
|
||||
minDist = dist[k];
|
||||
a_class[i] = k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//reset clusters and counters
|
||||
for (k = 0; k < numClusters; k++){
|
||||
counter[k] = 0;
|
||||
for (n = 0; n < VecSize; n++){
|
||||
curr_cluster[k][n] = 0.0;
|
||||
}
|
||||
}
|
||||
for (i = 0; i < numSamples; i++){
|
||||
for (n = 0; n < VecSize; n++){
|
||||
curr_cluster[a_class[i]][n] = curr_cluster[a_class[i]][n] + sample[i][n];
|
||||
}
|
||||
counter[a_class[i]]++;
|
||||
}
|
||||
|
||||
for (k = 0; k < numClusters; k++){
|
||||
for (n = 0; n < VecSize; n++){
|
||||
curr_cluster[k][n] = curr_cluster[k][n]/(float)counter[k];
|
||||
}
|
||||
}
|
||||
|
||||
error = 0.0;
|
||||
for (k = 0; k < numClusters; k++){
|
||||
for (n = 0; n < VecSize; n++){
|
||||
error = error + (curr_cluster[k][n] - prev_cluster[k][n])*(curr_cluster[k][n] - prev_cluster[k][n]);
|
||||
}
|
||||
}
|
||||
//error = error/(double)(numClusters*VecSize);
|
||||
|
||||
//copy curr_clusters to prev_clusters
|
||||
for (k = 0; k < numClusters; k++){
|
||||
for (n =0; n < VecSize; n++){
|
||||
prev_cluster[k][n] = curr_cluster[k][n];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//deallocate memory for curr_cluster and prev_cluster
|
||||
for (k = 0; k < numClusters; k++){
|
||||
delete curr_cluster[k];
|
||||
delete prev_cluster[k];
|
||||
}
|
||||
delete curr_cluster;
|
||||
delete prev_cluster;
|
||||
|
||||
delete counter;
|
||||
delete dist;
|
||||
return NumIter;
|
||||
|
||||
}
|
||||
|
||||
static int fmaKMeans(void)
|
||||
{
|
||||
CvTermCriteria crit;
|
||||
float** vectors;
|
||||
int* output;
|
||||
int* etalon_output;
|
||||
|
||||
int lErrors = 0;
|
||||
int lNumVect = 0;
|
||||
int lVectSize = 0;
|
||||
int lNumClust = 0;
|
||||
int lMaxNumIter = 0;
|
||||
float flEpsilon = 0;
|
||||
|
||||
int i,j;
|
||||
static int read_param = 0;
|
||||
|
||||
/* Initialization global parameters */
|
||||
if( !read_param )
|
||||
{
|
||||
read_param = 1;
|
||||
/* Read test-parameters */
|
||||
trsiRead( &lNumVect, "1000", "Number of vectors" );
|
||||
trsiRead( &lVectSize, "10", "Number of vectors" );
|
||||
trsiRead( &lNumClust, "20", "Number of clusters" );
|
||||
trsiRead( &lMaxNumIter,"100","Maximal number of iterations");
|
||||
trssRead( &flEpsilon, "0.5", "Accuracy" );
|
||||
}
|
||||
|
||||
crit = cvTermCriteria( CV_TERMCRIT_EPS|CV_TERMCRIT_ITER, lMaxNumIter, flEpsilon );
|
||||
|
||||
//allocate vectors
|
||||
vectors = (float**)cvAlloc( lNumVect * sizeof(float*) );
|
||||
for( i = 0; i < lNumVect; i++ )
|
||||
{
|
||||
vectors[i] = (float*)cvAlloc( lVectSize * sizeof( float ) );
|
||||
}
|
||||
|
||||
output = (int*)cvAlloc( lNumVect * sizeof(int) );
|
||||
etalon_output = (int*)cvAlloc( lNumVect * sizeof(int) );
|
||||
|
||||
//fill input vectors
|
||||
for( i = 0; i < lNumVect; i++ )
|
||||
{
|
||||
ats1flInitRandom( -2000, 2000, vectors[i], lVectSize );
|
||||
}
|
||||
|
||||
/* run etalon kmeans */
|
||||
/* actually it is the simpliest realization of kmeans */
|
||||
|
||||
int ni = _real_kmeans( lNumClust, vectors, lNumVect, lVectSize, etalon_output, crit.epsilon, crit.max_iter );
|
||||
|
||||
trsWrite( ATS_CON, "%d iterations done\n", ni );
|
||||
|
||||
/* Run OpenCV function */
|
||||
#define _KMEANS_TIME 0
|
||||
|
||||
#if _KMEANS_TIME
|
||||
//timing section
|
||||
trsTimerStart(0);
|
||||
__int64 tics = atsGetTickCount();
|
||||
#endif
|
||||
|
||||
cvKMeans( lNumClust, vectors, lNumVect, lVectSize,
|
||||
crit, output );
|
||||
|
||||
#if _KMEANS_TIME
|
||||
tics = atsGetTickCount() - tics;
|
||||
trsTimerStop(0);
|
||||
//output result
|
||||
//double dbUsecs =ATS_TICS_TO_USECS((double)tics);
|
||||
trsWrite( ATS_CON, "Tics per iteration %d\n", tics/ni );
|
||||
|
||||
#endif
|
||||
|
||||
//compare results
|
||||
for( j = 0; j < lNumVect; j++ )
|
||||
{
|
||||
if ( output[j] != etalon_output[j] )
|
||||
{
|
||||
lErrors++;
|
||||
}
|
||||
}
|
||||
|
||||
//free memory
|
||||
for( i = 0; i < lNumVect; i++ )
|
||||
{
|
||||
cvFree( &(vectors[i]) );
|
||||
}
|
||||
cvFree(&vectors);
|
||||
cvFree(&output);
|
||||
cvFree(&etalon_output);
|
||||
|
||||
if( lErrors == 0 ) return trsResult( TRS_OK, "No errors fixed for this text" );
|
||||
else return trsResult( TRS_FAIL, "Detected %d errors", lErrors );
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void InitAKMeans()
|
||||
{
|
||||
/* Register test function */
|
||||
trsReg( func_name[0], test_desc, atsAlgoClass, fmaKMeans );
|
||||
|
||||
} /* InitAKMeans */
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user