"atomic bomb" commit. Reorganized OpenCV directory structure

This commit is contained in:
Vadim Pisarevsky
2010-05-11 17:44:00 +00:00
commit 127d6649a1
1761 changed files with 1766340 additions and 0 deletions

697
modules/core/src/alloc.cpp Normal file
View File

@@ -0,0 +1,697 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define CV_USE_SYSTEM_MALLOC 1
namespace cv
{
static void* OutOfMemoryError(size_t size)
{
CV_Error_(CV_StsNoMem, ("Failed to allocate %lu bytes", (unsigned long)size));
return 0;
}
#if CV_USE_SYSTEM_MALLOC
void deleteThreadAllocData() {}
void* fastMalloc( size_t size )
{
uchar* udata = (uchar*)malloc(size + sizeof(void*) + CV_MALLOC_ALIGN);
if(!udata)
return OutOfMemoryError(size);
uchar** adata = alignPtr((uchar**)udata + 1, CV_MALLOC_ALIGN);
adata[-1] = udata;
return adata;
}
void fastFree(void* ptr)
{
if(ptr)
{
uchar* udata = ((uchar**)ptr)[-1];
CV_DbgAssert(udata < (uchar*)ptr &&
((uchar*)ptr - udata) <= (ptrdiff_t)(sizeof(void*)+CV_MALLOC_ALIGN));
free(udata);
}
}
#else
#if 0
#define SANITY_CHECK(block) \
CV_Assert(((size_t)(block) & (MEM_BLOCK_SIZE-1)) == 0 && \
(unsigned)(block)->binIdx <= (unsigned)MAX_BIN && \
(block)->signature == MEM_BLOCK_SIGNATURE)
#else
#define SANITY_CHECK(block)
#endif
#define STAT(stmt)
#ifdef WIN32
struct CriticalSection
{
CriticalSection() { InitializeCriticalSection(&cs); }
~CriticalSection() { DeleteCriticalSection(&cs); }
void lock() { EnterCriticalSection(&cs); }
void unlock() { LeaveCriticalSection(&cs); }
bool trylock() { return TryEnterCriticalSection(&cs) != 0; }
CRITICAL_SECTION cs;
};
void* SystemAlloc(size_t size)
{
void* ptr = malloc(size);
return ptr ? ptr : OutOfMemoryError(size);
}
void SystemFree(void* ptr, size_t)
{
free(ptr);
}
#else
struct CriticalSection
{
CriticalSection() { pthread_mutex_init(&mutex, 0); }
~CriticalSection() { pthread_mutex_destroy(&mutex); }
void lock() { pthread_mutex_lock(&mutex); }
void unlock() { pthread_mutex_unlock(&mutex); }
bool trylock() { return pthread_mutex_trylock(&mutex) == 0; }
pthread_mutex_t mutex;
};
void* SystemAlloc(size_t size)
{
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
void* ptr = 0;
ptr = mmap(ptr, size, (PROT_READ | PROT_WRITE), MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
return ptr != MAP_FAILED ? ptr : OutOfMemoryError(size);
}
void SystemFree(void* ptr, size_t size)
{
munmap(ptr, size);
}
#endif
struct AutoLock
{
AutoLock(CriticalSection& _cs) : cs(&_cs) { cs->lock(); }
~AutoLock() { cs->unlock(); }
CriticalSection* cs;
};
const size_t MEM_BLOCK_SIGNATURE = 0x01234567;
const int MEM_BLOCK_SHIFT = 14;
const size_t MEM_BLOCK_SIZE = 1 << MEM_BLOCK_SHIFT;
const size_t HDR_SIZE = 128;
const size_t MAX_BLOCK_SIZE = MEM_BLOCK_SIZE - HDR_SIZE;
const int MAX_BIN = 28;
static const int binSizeTab[MAX_BIN+1] =
{ 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 128, 160, 192, 256, 320, 384, 480, 544, 672, 768,
896, 1056, 1328, 1600, 2688, 4048, 5408, 8128, 16256 };
struct MallocTables
{
void initBinTab()
{
int i, j = 0, n;
for( i = 0; i <= MAX_BIN; i++ )
{
n = binSizeTab[i]>>3;
for( ; j <= n; j++ )
binIdx[j] = (uchar)i;
}
}
int bin(size_t size)
{
assert( size <= MAX_BLOCK_SIZE );
return binIdx[(size + 7)>>3];
}
MallocTables()
{
initBinTab();
}
uchar binIdx[MAX_BLOCK_SIZE/8+1];
};
MallocTables mallocTables;
struct Node
{
Node* next;
};
struct ThreadData;
struct Block
{
Block(Block* _next)
{
signature = MEM_BLOCK_SIGNATURE;
prev = 0;
next = _next;
privateFreeList = publicFreeList = 0;
bumpPtr = endPtr = 0;
objSize = 0;
threadData = 0;
data = (uchar*)this + HDR_SIZE;
}
~Block() {}
void init(Block* _prev, Block* _next, int _objSize, ThreadData* _threadData)
{
prev = _prev;
if(prev)
prev->next = this;
next = _next;
if(next)
next->prev = this;
objSize = _objSize;
binIdx = mallocTables.bin(objSize);
threadData = _threadData;
privateFreeList = publicFreeList = 0;
bumpPtr = data;
int nobjects = MAX_BLOCK_SIZE/objSize;
endPtr = bumpPtr + nobjects*objSize;
almostEmptyThreshold = (nobjects + 1)/2;
allocated = 0;
}
bool isFilled() const { return allocated > almostEmptyThreshold; }
size_t signature;
Block* prev;
Block* next;
Node* privateFreeList;
Node* publicFreeList;
uchar* bumpPtr;
uchar* endPtr;
uchar* data;
ThreadData* threadData;
int objSize;
int binIdx;
int allocated;
int almostEmptyThreshold;
CriticalSection cs;
};
struct BigBlock
{
BigBlock(int bigBlockSize, BigBlock* _next)
{
first = alignPtr((Block*)(this+1), MEM_BLOCK_SIZE);
next = _next;
nblocks = (int)(((char*)this + bigBlockSize - (char*)first)/MEM_BLOCK_SIZE);
Block* p = 0;
for( int i = nblocks-1; i >= 0; i-- )
p = ::new((uchar*)first + i*MEM_BLOCK_SIZE) Block(p);
}
~BigBlock()
{
for( int i = nblocks-1; i >= 0; i-- )
((Block*)((uchar*)first+i*MEM_BLOCK_SIZE))->~Block();
}
BigBlock* next;
Block* first;
int nblocks;
};
struct BlockPool
{
BlockPool(int _bigBlockSize=1<<20) : pool(0), bigBlockSize(_bigBlockSize)
{
}
~BlockPool()
{
AutoLock lock(cs);
while( pool )
{
BigBlock* nextBlock = pool->next;
pool->~BigBlock();
SystemFree(pool, bigBlockSize);
pool = nextBlock;
}
}
Block* alloc()
{
AutoLock lock(cs);
Block* block;
if( !freeBlocks )
{
BigBlock* bblock = ::new(SystemAlloc(bigBlockSize)) BigBlock(bigBlockSize, pool);
assert( bblock != 0 );
freeBlocks = bblock->first;
pool = bblock;
}
block = freeBlocks;
freeBlocks = freeBlocks->next;
if( freeBlocks )
freeBlocks->prev = 0;
STAT(stat.bruttoBytes += MEM_BLOCK_SIZE);
return block;
}
void free(Block* block)
{
AutoLock lock(cs);
block->prev = 0;
block->next = freeBlocks;
freeBlocks = block;
STAT(stat.bruttoBytes -= MEM_BLOCK_SIZE);
}
CriticalSection cs;
Block* freeBlocks;
BigBlock* pool;
int bigBlockSize;
int blocksPerBigBlock;
};
BlockPool mallocPool;
enum { START=0, FREE=1, GC=2 };
struct ThreadData
{
ThreadData() { for(int i = 0; i <= MAX_BIN; i++) bins[i][START] = bins[i][FREE] = bins[i][GC] = 0; }
~ThreadData()
{
// mark all the thread blocks as abandoned or even release them
for( int i = 0; i <= MAX_BIN; i++ )
{
Block *bin = bins[i][START], *block = bin;
bins[i][START] = bins[i][FREE] = bins[i][GC] = 0;
if( block )
{
do
{
Block* next = block->next;
int allocated = block->allocated;
{
AutoLock lock(block->cs);
block->next = block->prev = 0;
block->threadData = 0;
Node *node = block->publicFreeList;
for( ; node != 0; node = node->next )
allocated--;
}
if( allocated == 0 )
mallocPool.free(block);
block = next;
}
while( block != bin );
}
}
}
void moveBlockToFreeList( Block* block )
{
int i = block->binIdx;
Block*& freePtr = bins[i][FREE];
CV_DbgAssert( block->next->prev == block && block->prev->next == block );
if( block != freePtr )
{
Block*& gcPtr = bins[i][GC];
if( gcPtr == block )
gcPtr = block->next;
if( block->next != block )
{
block->prev->next = block->next;
block->next->prev = block->prev;
}
block->next = freePtr->next;
block->prev = freePtr;
freePtr = block->next->prev = block->prev->next = block;
}
}
Block* bins[MAX_BIN+1][3];
#ifdef WIN32
#ifdef WINCE
# define TLS_OUT_OF_INDEXES ((DWORD)0xFFFFFFFF)
#endif
static DWORD tlsKey;
static ThreadData* get()
{
ThreadData* data;
if( tlsKey == TLS_OUT_OF_INDEXES )
tlsKey = TlsAlloc();
data = (ThreadData*)TlsGetValue(tlsKey);
if( !data )
{
data = new ThreadData;
TlsSetValue(tlsKey, data);
}
return data;
}
#else
static void deleteData(void* data)
{
delete (ThreadData*)data;
}
static pthread_key_t tlsKey;
static ThreadData* get()
{
ThreadData* data;
if( !tlsKey )
pthread_key_create(&tlsKey, deleteData);
data = (ThreadData*)pthread_getspecific(tlsKey);
if( !data )
{
data = new ThreadData;
pthread_setspecific(tlsKey, data);
}
return data;
}
#endif
};
#ifdef WIN32
DWORD ThreadData::tlsKey = TLS_OUT_OF_INDEXES;
void deleteThreadAllocData()
{
if( ThreadData::tlsKey != TLS_OUT_OF_INDEXES )
delete (ThreadData*)TlsGetValue( ThreadData::tlsKey );
}
#else
pthread_key_t ThreadData::tlsKey = 0;
#endif
#if 0
static void checkList(ThreadData* tls, int idx)
{
Block* block = tls->bins[idx][START];
if( !block )
{
CV_DbgAssert( tls->bins[idx][FREE] == 0 && tls->bins[idx][GC] == 0 );
}
else
{
bool gcInside = false;
bool freeInside = false;
do
{
if( tls->bins[idx][FREE] == block )
freeInside = true;
if( tls->bins[idx][GC] == block )
gcInside = true;
block = block->next;
}
while( block != tls->bins[idx][START] );
CV_DbgAssert( gcInside && freeInside );
}
}
#else
#define checkList(tls, idx)
#endif
void* fastMalloc( size_t size )
{
if( size > MAX_BLOCK_SIZE )
{
size_t size1 = size + sizeof(uchar*)*2 + MEM_BLOCK_SIZE;
uchar* udata = (uchar*)SystemAlloc(size1);
uchar** adata = alignPtr((uchar**)udata + 2, MEM_BLOCK_SIZE);
adata[-1] = udata;
adata[-2] = (uchar*)size1;
return adata;
}
{
ThreadData* tls = ThreadData::get();
int idx = mallocTables.bin(size);
Block*& startPtr = tls->bins[idx][START];
Block*& gcPtr = tls->bins[idx][GC];
Block*& freePtr = tls->bins[idx][FREE], *block = freePtr;
checkList(tls, idx);
size = binSizeTab[idx];
STAT(
stat.nettoBytes += size;
stat.mallocCalls++;
);
uchar* data = 0;
for(;;)
{
if( block )
{
// try to find non-full block
for(;;)
{
CV_DbgAssert( block->next->prev == block && block->prev->next == block );
if( block->bumpPtr )
{
data = block->bumpPtr;
if( (block->bumpPtr += size) >= block->endPtr )
block->bumpPtr = 0;
break;
}
if( block->privateFreeList )
{
data = (uchar*)block->privateFreeList;
block->privateFreeList = block->privateFreeList->next;
break;
}
if( block == startPtr )
break;
block = block->next;
}
#if 0
avg_k += _k;
avg_nk++;
if( avg_nk == 1000 )
{
printf("avg search iters per 1e3 allocs = %g\n", (double)avg_k/avg_nk );
avg_k = avg_nk = 0;
}
#endif
freePtr = block;
if( !data )
{
block = gcPtr;
for( int k = 0; k < 2; k++ )
{
SANITY_CHECK(block);
CV_DbgAssert( block->next->prev == block && block->prev->next == block );
if( block->publicFreeList )
{
{
AutoLock lock(block->cs);
block->privateFreeList = block->publicFreeList;
block->publicFreeList = 0;
}
Node* node = block->privateFreeList;
for(;node != 0; node = node->next)
--block->allocated;
data = (uchar*)block->privateFreeList;
block->privateFreeList = block->privateFreeList->next;
gcPtr = block->next;
if( block->allocated+1 <= block->almostEmptyThreshold )
tls->moveBlockToFreeList(block);
break;
}
block = block->next;
}
if( !data )
gcPtr = block;
}
}
if( data )
break;
block = mallocPool.alloc();
block->init(startPtr ? startPtr->prev : block, startPtr ? startPtr : block, (int)size, tls);
if( !startPtr )
startPtr = gcPtr = freePtr = block;
checkList(tls, block->binIdx);
SANITY_CHECK(block);
}
++block->allocated;
return data;
}
}
void fastFree( void* ptr )
{
if( ((size_t)ptr & (MEM_BLOCK_SIZE-1)) == 0 )
{
if( ptr != 0 )
{
void* origPtr = ((void**)ptr)[-1];
size_t sz = (size_t)((void**)ptr)[-2];
SystemFree( origPtr, sz );
}
return;
}
{
ThreadData* tls = ThreadData::get();
Node* node = (Node*)ptr;
Block* block = (Block*)((size_t)ptr & -(int)MEM_BLOCK_SIZE);
assert( block->signature == MEM_BLOCK_SIGNATURE );
if( block->threadData == tls )
{
STAT(
stat.nettoBytes -= block->objSize;
stat.freeCalls++;
float ratio = (float)stat.nettoBytes/stat.bruttoBytes;
if( stat.minUsageRatio > ratio )
stat.minUsageRatio = ratio;
);
SANITY_CHECK(block);
bool prevFilled = block->isFilled();
--block->allocated;
if( !block->isFilled() && (block->allocated == 0 || prevFilled) )
{
if( block->allocated == 0 )
{
int idx = block->binIdx;
Block*& startPtr = tls->bins[idx][START];
Block*& freePtr = tls->bins[idx][FREE];
Block*& gcPtr = tls->bins[idx][GC];
if( block == block->next )
{
CV_DbgAssert( startPtr == block && freePtr == block && gcPtr == block );
startPtr = freePtr = gcPtr = 0;
}
else
{
if( freePtr == block )
freePtr = block->next;
if( gcPtr == block )
gcPtr = block->next;
if( startPtr == block )
startPtr = block->next;
block->prev->next = block->next;
block->next->prev = block->prev;
}
mallocPool.free(block);
checkList(tls, idx);
return;
}
tls->moveBlockToFreeList(block);
}
node->next = block->privateFreeList;
block->privateFreeList = node;
}
else
{
AutoLock lock(block->cs);
SANITY_CHECK(block);
node->next = block->publicFreeList;
block->publicFreeList = node;
if( block->threadData == 0 )
{
// take ownership of the abandoned block.
// note that it can happen at the same time as
// ThreadData::deleteData() marks the blocks as abandoned,
// so this part of the algorithm needs to be checked for data races
int idx = block->binIdx;
block->threadData = tls;
Block*& startPtr = tls->bins[idx][START];
if( startPtr )
{
block->next = startPtr;
block->prev = startPtr->prev;
block->next->prev = block->prev->next = block;
}
else
startPtr = tls->bins[idx][FREE] = tls->bins[idx][GC] = block;
}
}
}
}
#endif
}
CV_IMPL void cvSetMemoryManager( CvAllocFunc, CvFreeFunc, void * )
{
CV_Error( -1, "Custom memory allocator is not supported" );
}
CV_IMPL void* cvAlloc( size_t size )
{
return cv::fastMalloc( size );
}
CV_IMPL void cvFree_( void* ptr )
{
cv::fastFree( ptr );
}
/* End of file. */

1722
modules/core/src/arithm.cpp Normal file

File diff suppressed because it is too large Load Diff

3200
modules/core/src/array.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,980 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
/****************************************************************************************\
* split *
\****************************************************************************************/
template<typename T> static void
splitC2_( const Mat& srcmat, Mat* dstmat )
{
Size size = getContinuousSize( srcmat, dstmat[0], dstmat[1] );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
T* dst0 = (T*)(dstmat[0].data + dstmat[0].step*y);
T* dst1 = (T*)(dstmat[1].data + dstmat[1].step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src[x*2], t1 = src[x*2+1];
dst0[x] = t0; dst1[x] = t1;
}
}
}
template<typename T> static void
splitC3_( const Mat& srcmat, Mat* dstmat )
{
Size size = getContinuousSize( srcmat, dstmat[0], dstmat[1], dstmat[2] );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
T* dst0 = (T*)(dstmat[0].data + dstmat[0].step*y);
T* dst1 = (T*)(dstmat[1].data + dstmat[1].step*y);
T* dst2 = (T*)(dstmat[2].data + dstmat[2].step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src[x*3], t1 = src[x*3+1], t2 = src[x*3+2];
dst0[x] = t0; dst1[x] = t1; dst2[x] = t2;
}
}
}
template<typename T> static void
splitC4_( const Mat& srcmat, Mat* dstmat )
{
Size size = getContinuousSize( srcmat, dstmat[0], dstmat[1], dstmat[2], dstmat[3] );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
T* dst0 = (T*)(dstmat[0].data + dstmat[0].step*y);
T* dst1 = (T*)(dstmat[1].data + dstmat[1].step*y);
T* dst2 = (T*)(dstmat[2].data + dstmat[2].step*y);
T* dst3 = (T*)(dstmat[3].data + dstmat[3].step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src[x*4], t1 = src[x*4+1];
dst0[x] = t0; dst1[x] = t1;
t0 = src[x*4+2]; t1 = src[x*4+3];
dst2[x] = t0; dst3[x] = t1;
}
}
}
typedef void (*SplitFunc)(const Mat& src, Mat* dst);
void split(const Mat& src, Mat* mv)
{
static SplitFunc tab[] =
{
splitC2_<uchar>, splitC2_<ushort>, splitC2_<int>, 0, splitC2_<int64>,
splitC3_<uchar>, splitC3_<ushort>, splitC3_<int>, 0, splitC3_<int64>,
splitC4_<uchar>, splitC4_<ushort>, splitC4_<int>, 0, splitC4_<int64>
};
int i, depth = src.depth(), cn = src.channels();
Size size = src.size();
if( cn == 1 )
{
src.copyTo(mv[0]);
return;
}
for( i = 0; i < cn; i++ )
mv[i].create(src.size(), depth);
if( cn <= 4 )
{
SplitFunc func = tab[(cn-2)*5 + (src.elemSize1()>>1)];
CV_Assert( func != 0 );
func( src, mv );
}
else
{
vector<int> pairs(cn*2);
for( i = 0; i < cn; i++ )
{
pairs[i*2] = i;
pairs[i*2+1] = 0;
}
mixChannels( &src, 1, mv, cn, &pairs[0], cn );
}
}
/****************************************************************************************\
* merge *
\****************************************************************************************/
// input vector is made non-const to make sure that we do not copy Mat on each access
template<typename T> static void
mergeC2_( const Mat* srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat[0], srcmat[1], dstmat );
for( int y = 0; y < size.height; y++ )
{
const T* src0 = (const T*)(srcmat[0].data + srcmat[0].step*y);
const T* src1 = (const T*)(srcmat[1].data + srcmat[1].step*y);
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src0[x], t1 = src1[x];
dst[x*2] = t0; dst[x*2+1] = t1;
}
}
}
template<typename T> static void
mergeC3_( const Mat* srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat[0], srcmat[1], srcmat[2], dstmat );
for( int y = 0; y < size.height; y++ )
{
const T* src0 = (const T*)(srcmat[0].data + srcmat[0].step*y);
const T* src1 = (const T*)(srcmat[1].data + srcmat[1].step*y);
const T* src2 = (const T*)(srcmat[2].data + srcmat[2].step*y);
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src0[x], t1 = src1[x], t2 = src2[x];
dst[x*3] = t0; dst[x*3+1] = t1; dst[x*3+2] = t2;
}
}
}
template<typename T> static void
mergeC4_( const Mat* srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat[0], srcmat[1], srcmat[2], srcmat[3], dstmat );
for( int y = 0; y < size.height; y++ )
{
const T* src0 = (const T*)(srcmat[0].data + srcmat[0].step*y);
const T* src1 = (const T*)(srcmat[1].data + srcmat[1].step*y);
const T* src2 = (const T*)(srcmat[2].data + srcmat[2].step*y);
const T* src3 = (const T*)(srcmat[3].data + srcmat[3].step*y);
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( int x = 0; x < size.width; x++ )
{
T t0 = src0[x], t1 = src1[x];
dst[x*4] = t0; dst[x*4+1] = t1;
t0 = src2[x]; t1 = src3[x];
dst[x*4+2] = t0; dst[x*4+3] = t1;
}
}
}
typedef void (*MergeFunc)(const Mat* src, Mat& dst);
void merge(const Mat* mv, size_t n, Mat& dst)
{
static MergeFunc tab[] =
{
mergeC2_<uchar>, mergeC2_<ushort>, mergeC2_<int>, 0, mergeC2_<int64>,
mergeC3_<uchar>, mergeC3_<ushort>, mergeC3_<int>, 0, mergeC3_<int64>,
mergeC4_<uchar>, mergeC4_<ushort>, mergeC4_<int>, 0, mergeC4_<int64>
};
size_t i;
CV_Assert( mv && n > 0 );
int depth = mv[0].depth();
bool allch1 = true;
int total = 0;
Size size = mv[0].size();
for( i = 0; i < n; i++ )
{
CV_Assert(mv[i].size() == size && mv[i].depth() == depth);
allch1 = allch1 && mv[i].channels() == 1;
total += mv[i].channels();
}
CV_Assert( 0 < total && total <= CV_CN_MAX );
if( total == 1 )
{
mv[0].copyTo(dst);
return;
}
dst.create(size, CV_MAKETYPE(depth, total));
if( allch1 && total <= 4 )
{
MergeFunc func = tab[(total-2)*5 + (CV_ELEM_SIZE(depth)>>1)];
CV_Assert( func != 0 );
func( mv, dst );
}
else
{
vector<int> pairs(total*2);
int j, k, ni=0;
for( i = 0, j = 0; i < n; i++, j += ni )
{
ni = mv[i].channels();
for( k = 0; k < ni; k++ )
{
pairs[(j+k)*2] = j + k;
pairs[(j+k)*2+1] = j + k;
}
}
mixChannels( mv, n, &dst, 1, &pairs[0], total );
}
}
/****************************************************************************************\
* Generalized split/merge: mixing channels *
\****************************************************************************************/
template<typename T> static void
mixChannels_( const void** _src, const int* sdelta0,
const int* sdelta1, void** _dst,
const int* ddelta0, const int* ddelta1,
int n, Size size )
{
const T** src = (const T**)_src;
T** dst = (T**)_dst;
int i, k;
int block_size0 = n == 1 ? size.width : 1024;
for( ; size.height--; )
{
int remaining = size.width;
for( ; remaining > 0; )
{
int block_size = MIN( remaining, block_size0 );
for( k = 0; k < n; k++ )
{
const T* s = src[k];
T* d = dst[k];
int ds = sdelta1[k], dd = ddelta1[k];
if( s )
{
for( i = 0; i <= block_size - 2; i += 2, s += ds*2, d += dd*2 )
{
T t0 = s[0], t1 = s[ds];
d[0] = t0; d[dd] = t1;
}
if( i < block_size )
d[0] = s[0], s += ds, d += dd;
src[k] = s;
}
else
{
for( i=0; i <= block_size-2; i+=2, d+=dd*2 )
d[0] = d[dd] = 0;
if( i < block_size )
d[0] = 0, d += dd;
}
dst[k] = d;
}
remaining -= block_size;
}
for( k = 0; k < n; k++ )
src[k] += sdelta0[k], dst[k] += ddelta0[k];
}
}
typedef void (*MixChannelsFunc)( const void** src, const int* sdelta0,
const int* sdelta1, void** dst, const int* ddelta0, const int* ddelta1, int n, Size size );
void mixChannels( const Mat* src, int nsrcs, Mat* dst, int ndsts, const int* fromTo, size_t npairs )
{
size_t i;
if( npairs == 0 )
return;
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 );
int depth = dst[0].depth(), esz1 = (int)dst[0].elemSize1();
Size size = dst[0].size();
AutoBuffer<uchar> buf(npairs*(sizeof(void*)*2 + sizeof(int)*4));
void** srcs = (void**)(uchar*)buf;
void** dsts = srcs + npairs;
int *s0 = (int*)(dsts + npairs), *s1 = s0 + npairs, *d0 = s1 + npairs, *d1 = d0 + npairs;
bool isContinuous = true;
for( i = 0; i < npairs; i++ )
{
int i0 = fromTo[i*2], i1 = fromTo[i*2+1], j;
if( i0 >= 0 )
{
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ )
if( i0 < src[j].channels() )
break;
CV_Assert(j < nsrcs && src[j].size() == size && src[j].depth() == depth);
isContinuous = isContinuous && src[j].isContinuous();
srcs[i] = src[j].data + i0*esz1;
s1[i] = src[j].channels(); s0[i] = (int)src[j].step/esz1 - size.width*src[j].channels();
}
else
{
srcs[i] = 0; s1[i] = s0[i] = 0;
}
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ )
if( i1 < dst[j].channels() )
break;
CV_Assert(i1 >= 0 && j < ndsts && dst[j].size() == size && dst[j].depth() == depth);
isContinuous = isContinuous && dst[j].isContinuous();
dsts[i] = dst[j].data + i1*esz1;
d1[i] = dst[j].channels(); d0[i] = (int)dst[j].step/esz1 - size.width*dst[j].channels();
}
MixChannelsFunc func = 0;
if( esz1 == 1 )
func = mixChannels_<uchar>;
else if( esz1 == 2 )
func = mixChannels_<ushort>;
else if( esz1 == 4 )
func = mixChannels_<int>;
else if( esz1 == 8 )
func = mixChannels_<int64>;
else
CV_Error( CV_StsUnsupportedFormat, "" );
if( isContinuous )
{
size.width *= size.height;
size.height = 1;
}
func( (const void**)srcs, s0, s1, dsts, d0, d1, (int)npairs, size );
}
/****************************************************************************************\
* convertScale[Abs] *
\****************************************************************************************/
template<typename sT, typename dT> struct OpCvt
{
typedef sT type1;
typedef dT rtype;
rtype operator()(type1 x) const { return saturate_cast<rtype>(x); }
};
template<typename sT, typename dT, int _fbits> struct OpCvtFixPt
{
typedef sT type1;
typedef dT rtype;
enum { fbits = _fbits };
rtype operator()(type1 x) const
{
return saturate_cast<rtype>((x + (1<<(fbits-1)))>>fbits);
}
};
template<typename sT, typename dT> struct OpCvtAbs
{
typedef sT type1;
typedef dT rtype;
rtype operator()(type1 x) const { return saturate_cast<rtype>(std::abs(x)); }
};
template<typename sT, typename dT, int _fbits> struct OpCvtAbsFixPt
{
typedef sT type1;
typedef dT rtype;
enum { fbits = _fbits };
rtype operator()(type1 x) const
{
return saturate_cast<rtype>((std::abs(x) + (1<<(fbits-1)))>>fbits);
}
};
template<class Op> static void
cvtScaleLUT_( const Mat& srcmat, Mat& dstmat, double scale, double shift )
{
Op op;
typedef typename Op::rtype DT;
DT lut[256];
int i, sdepth = srcmat.depth(), ddepth = dstmat.depth();
double val = shift;
for( i = 0; i < 128; i++, val += scale )
lut[i] = op(val);
if( sdepth == CV_8S )
val = shift*2 - val;
for( ; i < 256; i++, val += scale )
lut[i] = op(val);
Mat _srcmat = srcmat;
if( sdepth == CV_8S )
_srcmat = Mat(srcmat.size(), CV_8UC(srcmat.channels()), srcmat.data, srcmat.step);
LUT(_srcmat, Mat(1, 256, ddepth, lut), dstmat);
}
template<typename T, class Op> static void
cvtScale_( const Mat& srcmat, Mat& dstmat, double _scale, double _shift )
{
Op op;
typedef typename Op::type1 WT;
typedef typename Op::rtype DT;
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
WT scale = saturate_cast<WT>(_scale), shift = saturate_cast<WT>(_shift);
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
DT* dst = (DT*)(dstmat.data + dstmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
DT t0, t1;
t0 = op(src[x]*scale + shift);
t1 = op(src[x+1]*scale + shift);
dst[x] = t0; dst[x+1] = t1;
t0 = op(src[x+2]*scale + shift);
t1 = op(src[x+3]*scale + shift);
dst[x+2] = t0; dst[x+3] = t1;
}
for( ; x < size.width; x++ )
dst[x] = op(src[x]*scale + shift);
}
}
template<typename T, class OpFixPt, class Op, int MAX_SHIFT> static void
cvtScaleInt_( const Mat& srcmat, Mat& dstmat, double _scale, double _shift )
{
if( std::abs(_scale) > 1 || std::abs(_shift) > MAX_SHIFT )
{
cvtScale_<T, Op>(srcmat, dstmat, _scale, _shift);
return;
}
OpFixPt op;
typedef typename OpFixPt::rtype DT;
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
int scale = saturate_cast<int>(_scale*(1<<OpFixPt::fbits)),
shift = saturate_cast<int>(_shift*(1<<OpFixPt::fbits));
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
DT* dst = (DT*)(dstmat.data + dstmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
DT t0, t1;
t0 = op(src[x]*scale + shift);
t1 = op(src[x+1]*scale + shift);
dst[x] = t0; dst[x+1] = t1;
t0 = op(src[x+2]*scale + shift);
t1 = op(src[x+3]*scale + shift);
dst[x+2] = t0; dst[x+3] = t1;
}
for( ; x < size.width; x++ )
dst[x] = op(src[x]*scale + shift);
}
}
template<typename T, typename DT> static void
cvt_( const Mat& srcmat, Mat& dstmat )
{
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcmat.step*y);
DT* dst = (DT*)(dstmat.data + dstmat.step*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
DT t0, t1;
t0 = saturate_cast<DT>(src[x]);
t1 = saturate_cast<DT>(src[x+1]);
dst[x] = t0; dst[x+1] = t1;
t0 = saturate_cast<DT>(src[x+2]);
t1 = saturate_cast<DT>(src[x+3]);
dst[x+2] = t0; dst[x+3] = t1;
}
for( ; x < size.width; x++ )
dst[x] = saturate_cast<DT>(src[x]);
}
}
static const int FBITS = 15;
#define ICV_SCALE(x) CV_DESCALE((x), FBITS)
typedef void (*CvtFunc)( const Mat& src, Mat& dst );
typedef void (*CvtScaleFunc)( const Mat& src, Mat& dst, double scale, double shift );
void convertScaleAbs( const Mat& src, Mat& dst, double scale, double shift )
{
static CvtScaleFunc tab[] =
{
cvtScaleLUT_<OpCvtAbs<double, uchar> >,
cvtScaleLUT_<OpCvtAbs<double, uchar> >,
cvtScaleInt_<ushort, OpCvtAbsFixPt<int, uchar, FBITS>, OpCvtAbs<float, uchar>, 0>,
cvtScaleInt_<short, OpCvtAbsFixPt<int, uchar, FBITS>, OpCvtAbs<float, uchar>, 1<<15>,
cvtScale_<int, OpCvtAbs<double, uchar> >,
cvtScale_<float, OpCvtAbs<float, uchar> >,
cvtScale_<double, OpCvtAbs<double, uchar> >, 0
};
Mat src0 = src;
dst.create( src.size(), CV_8UC(src.channels()) );
CvtScaleFunc func = tab[src0.depth()];
CV_Assert( func != 0 );
func( src0, dst, scale, shift );
}
void Mat::convertTo(Mat& dst, int _type, double alpha, double beta) const
{
static CvtFunc tab[8][8] =
{
{0, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
{cvt_<schar, uchar>, 0, cvt_<schar, ushort>, cvt_<schar, short>,
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
{cvt_<ushort, uchar>, cvt_<ushort, schar>, 0, cvt_<ushort, short>,
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, 0,
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
cvt_<int, short>, 0, cvt_<int, float>, cvt_<int, double>, 0},
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
cvt_<float, short>, cvt_<float, int>, 0, cvt_<float, double>, 0},
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, 0, 0},
{0,0,0,0,0,0,0,0}
};
static CvtScaleFunc stab[8][8] =
{
{
cvtScaleLUT_<OpCvt<double, uchar> >,
cvtScaleLUT_<OpCvt<double, schar> >,
cvtScaleLUT_<OpCvt<double, ushort> >,
cvtScaleLUT_<OpCvt<double, short> >,
cvtScaleLUT_<OpCvt<double, int> >,
cvtScaleLUT_<OpCvt<double, float> >,
cvtScaleLUT_<OpCvt<double, double> >, 0
},
{
// this is copy of the above section,
// since cvScaleLUT handles both 8u->? and 8s->? cases
cvtScaleLUT_<OpCvt<double, uchar> >,
cvtScaleLUT_<OpCvt<double, schar> >,
cvtScaleLUT_<OpCvt<double, ushort> >,
cvtScaleLUT_<OpCvt<double, short> >,
cvtScaleLUT_<OpCvt<double, int> >,
cvtScaleLUT_<OpCvt<double, float> >,
cvtScaleLUT_<OpCvt<double, double> >, 0,
},
{
cvtScaleInt_<ushort, OpCvtFixPt<int, uchar, FBITS>, OpCvt<float, uchar>, 0>,
cvtScaleInt_<ushort, OpCvtFixPt<int, schar, FBITS>, OpCvt<float, schar>, 0>,
cvtScaleInt_<ushort, OpCvtFixPt<int, ushort, FBITS>, OpCvt<float, ushort>, 0>,
cvtScaleInt_<ushort, OpCvtFixPt<int, short, FBITS>, OpCvt<float, short>, 0>,
cvtScale_<ushort, OpCvt<double, int> >,
cvtScale_<ushort, OpCvt<float, float> >,
cvtScale_<ushort, OpCvt<double, double> >, 0,
},
{
cvtScaleInt_<short, OpCvtFixPt<int, uchar, FBITS>, OpCvt<float, uchar>, 1<<15>,
cvtScaleInt_<short, OpCvtFixPt<int, schar, FBITS>, OpCvt<float, schar>, 1<<15>,
cvtScaleInt_<short, OpCvtFixPt<int, ushort, FBITS>, OpCvt<float, ushort>, 1<<15>,
cvtScaleInt_<short, OpCvtFixPt<int, short, FBITS>, OpCvt<float, short>, 1<<15>,
cvtScale_<short, OpCvt<double, int> >,
cvtScale_<short, OpCvt<float, float> >,
cvtScale_<short, OpCvt<double, double> >, 0,
},
{
cvtScale_<int, OpCvt<float, uchar> >,
cvtScale_<int, OpCvt<float, schar> >,
cvtScale_<int, OpCvt<double, ushort> >,
cvtScale_<int, OpCvt<double, short> >,
cvtScale_<int, OpCvt<double, int> >,
cvtScale_<int, OpCvt<float, float> >,
cvtScale_<int, OpCvt<double, double> >, 0,
},
{
cvtScale_<float, OpCvt<float, uchar> >,
cvtScale_<float, OpCvt<float, schar> >,
cvtScale_<float, OpCvt<float, ushort> >,
cvtScale_<float, OpCvt<float, short> >,
cvtScale_<float, OpCvt<float, int> >,
cvtScale_<float, OpCvt<float, float> >,
cvtScale_<float, OpCvt<double, double> >, 0,
},
{
cvtScale_<double, OpCvt<double, uchar> >,
cvtScale_<double, OpCvt<double, schar> >,
cvtScale_<double, OpCvt<double, ushort> >,
cvtScale_<double, OpCvt<double, short> >,
cvtScale_<double, OpCvt<double, int> >,
cvtScale_<double, OpCvt<double, float> >,
cvtScale_<double, OpCvt<double, double> >, 0,
}
};
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON;
if( _type < 0 )
_type = type();
else
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels());
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type);
if( sdepth == ddepth && noScale )
{
copyTo(dst);
return;
}
Mat temp;
const Mat* psrc = this;
if( sdepth != ddepth && psrc == &dst )
psrc = &(temp = *this);
dst.create( size(), _type );
if( noScale )
{
CvtFunc func = tab[sdepth][ddepth];
CV_Assert( func != 0 );
func( *psrc, dst );
}
else
{
CvtScaleFunc func = stab[sdepth][ddepth];
CV_Assert( func != 0 );
func( *psrc, dst, alpha, beta );
}
}
/****************************************************************************************\
* LUT Transform *
\****************************************************************************************/
template<typename T> static void
LUT8u( const Mat& srcmat, Mat& dstmat, const Mat& lut )
{
int cn = lut.channels();
int max_block_size = (1 << 10)*cn;
const T* _lut = (const T*)lut.data;
T lutp[4][256];
int y, i, k;
Size size = getContinuousSize( srcmat, dstmat, srcmat.channels() );
if( cn == 1 )
{
for( y = 0; y < size.height; y++ )
{
const uchar* src = srcmat.data + srcmat.step*y;
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( i = 0; i < size.width; i++ )
dst[i] = _lut[src[i]];
}
return;
}
if( size.width*size.height < 256 )
{
for( y = 0; y < size.height; y++ )
{
const uchar* src = srcmat.data + srcmat.step*y;
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( k = 0; k < cn; k++ )
for( i = 0; i < size.width; i += cn )
dst[i+k] = _lut[src[i+k]*cn+k];
}
return;
}
/* repack the lut to planar layout */
for( k = 0; k < cn; k++ )
for( i = 0; i < 256; i++ )
lutp[k][i] = _lut[i*cn+k];
for( y = 0; y < size.height; y++ )
{
const uchar* src = srcmat.data + srcmat.step*y;
T* dst = (T*)(dstmat.data + dstmat.step*y);
for( i = 0; i < size.width; )
{
int j, limit = std::min(size.width, i + max_block_size);
for( k = 0; k < cn; k++, src++, dst++ )
{
const T* lut = lutp[k];
for( j = i; j <= limit - cn*2; j += cn*2 )
{
T t0 = lut[src[j]];
T t1 = lut[src[j+cn]];
dst[j] = t0; dst[j+cn] = t1;
}
for( ; j < limit; j += cn )
dst[j] = lut[src[j]];
}
src -= cn;
dst -= cn;
i = limit;
}
}
}
typedef void (*LUTFunc)( const Mat& src, Mat& dst, const Mat& lut );
void LUT( const Mat& src, const Mat& lut, Mat& dst )
{
int cn = src.channels(), esz1 = (int)lut.elemSize1();
CV_Assert( (lut.channels() == cn || lut.channels() == 1) &&
lut.rows*lut.cols == 256 && lut.isContinuous() &&
(src.depth() == CV_8U || src.depth() == CV_8S) );
dst.create( src.size(), CV_MAKETYPE(lut.depth(), cn));
LUTFunc func = 0;
if( esz1 == 1 )
func = LUT8u<uchar>;
else if( esz1 == 2 )
func = LUT8u<ushort>;
else if( esz1 == 4 )
func = LUT8u<int>;
else if( esz1 == 8 )
func = LUT8u<int64>;
else
CV_Error(CV_StsUnsupportedFormat, "");
func( src, dst, lut );
}
void normalize( const Mat& src, Mat& dst, double a, double b,
int norm_type, int rtype, const Mat& mask )
{
double scale = 1, shift = 0;
if( norm_type == CV_MINMAX )
{
double smin = 0, smax = 0;
double dmin = MIN( a, b ), dmax = MAX( a, b );
minMaxLoc( src, &smin, &smax, 0, 0, mask );
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0);
shift = dmin - smin*scale;
}
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
{
scale = norm( src, norm_type, mask );
scale = scale > DBL_EPSILON ? a/scale : 0.;
shift = 0;
}
else
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
if( !mask.data )
src.convertTo( dst, rtype, scale, shift );
else
{
Mat temp;
src.convertTo( temp, rtype, scale, shift );
temp.copyTo( dst, mask );
}
}
}
CV_IMPL void
cvSplit( const void* srcarr, void* dstarr0, void* dstarr1, void* dstarr2, void* dstarr3 )
{
void* dptrs[] = { dstarr0, dstarr1, dstarr2, dstarr3 };
cv::Mat src = cv::cvarrToMat(srcarr);
int i, j, nz = 0;
for( i = 0; i < 4; i++ )
nz += dptrs[i] != 0;
CV_Assert( nz > 0 );
cv::vector<cv::Mat> dvec(nz);
cv::vector<int> pairs(nz*2);
for( i = j = 0; i < 4; i++ )
{
if( dptrs[i] != 0 )
{
dvec[j] = cv::cvarrToMat(dptrs[i]);
CV_Assert( dvec[j].size() == src.size() &&
dvec[j].depth() == src.depth() &&
dvec[j].channels() == 1 && i < src.channels() );
pairs[j*2] = i;
pairs[j*2+1] = j;
j++;
}
}
if( nz == src.channels() )
cv::split( src, dvec );
else
{
cv::mixChannels( &src, 1, &dvec[0], nz, &pairs[0], nz );
}
}
CV_IMPL void
cvMerge( const void* srcarr0, const void* srcarr1, const void* srcarr2,
const void* srcarr3, void* dstarr )
{
const void* sptrs[] = { srcarr0, srcarr1, srcarr2, srcarr3 };
cv::Mat dst = cv::cvarrToMat(dstarr);
int i, j, nz = 0;
for( i = 0; i < 4; i++ )
nz += sptrs[i] != 0;
CV_Assert( nz > 0 );
cv::vector<cv::Mat> svec(nz);
cv::vector<int> pairs(nz*2);
for( i = j = 0; i < 4; i++ )
{
if( sptrs[i] != 0 )
{
svec[j] = cv::cvarrToMat(sptrs[i]);
CV_Assert( svec[j].size() == dst.size() &&
svec[j].depth() == dst.depth() &&
svec[j].channels() == 1 && i < dst.channels() );
pairs[j*2] = j;
pairs[j*2+1] = i;
j++;
}
}
if( nz == dst.channels() )
cv::merge( svec, dst );
else
{
cv::mixChannels( &svec[0], nz, &dst, 1, &pairs[0], nz );
}
}
CV_IMPL void
cvMixChannels( const CvArr** src, int src_count,
CvArr** dst, int dst_count,
const int* from_to, int pair_count )
{
cv::AutoBuffer<cv::Mat, 32> buf;
int i;
for( i = 0; i < src_count; i++ )
buf[i] = cv::cvarrToMat(src[i]);
for( i = 0; i < dst_count; i++ )
buf[i+src_count] = cv::cvarrToMat(dst[i]);
cv::mixChannels(&buf[0], src_count, &buf[src_count], dst_count, from_to, pair_count);
}
CV_IMPL void
cvConvertScaleAbs( const void* srcarr, void* dstarr,
double scale, double shift )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && dst.type() == CV_8UC(src.channels()));
cv::convertScaleAbs( src, dst, scale, shift );
}
CV_IMPL void
cvConvertScale( const void* srcarr, void* dstarr,
double scale, double shift )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
src.convertTo(dst, dst.type(), scale, shift);
}
CV_IMPL void cvLUT( const void* srcarr, void* dstarr, const void* lutarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), lut = cv::cvarrToMat(lutarr);
CV_Assert( dst.size() == src.size() && dst.type() == CV_MAKETYPE(lut.depth(), src.channels()) );
cv::LUT( src, lut, dst );
}
CV_IMPL void cvNormalize( const CvArr* srcarr, CvArr* dstarr,
double a, double b, int norm_type, const CvArr* maskarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
if( maskarr )
mask = cv::cvarrToMat(maskarr);
CV_Assert( dst.size() == src.size() && src.channels() == dst.channels() );
cv::normalize( src, dst, a, b, norm_type, dst.type(), mask );
}
/* End of file. */

541
modules/core/src/copy.cpp Normal file
View File

@@ -0,0 +1,541 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Mat basic operations: Copy, Set
//
// */
#include "precomp.hpp"
namespace cv
{
template<typename T> static void
copyMask_(const Mat& srcmat, Mat& dstmat, const Mat& maskmat)
{
const uchar* mask = maskmat.data;
size_t sstep = srcmat.step;
size_t dstep = dstmat.step;
size_t mstep = maskmat.step;
Size size = getContinuousSize(srcmat, dstmat, maskmat);
for( int y = 0; y < size.height; y++, mask += mstep )
{
const T* src = (const T*)(srcmat.data + sstep*y);
T* dst = (T*)(dstmat.data + dstep*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
dst[x] = src[x];
if( mask[x+1] )
dst[x+1] = src[x+1];
if( mask[x+2] )
dst[x+2] = src[x+2];
if( mask[x+3] )
dst[x+3] = src[x+3];
}
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
template<typename T> static void
setMask_(const void* _scalar, Mat& dstmat, const Mat& maskmat)
{
T scalar = *(T*)_scalar;
const uchar* mask = maskmat.data;
size_t dstep = dstmat.step;
size_t mstep = maskmat.step;
Size size = dstmat.size();
if( dstmat.isContinuous() && maskmat.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
for( int y = 0; y < size.height; y++, mask += mstep )
{
T* dst = (T*)(dstmat.data + dstep*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
dst[x] = scalar;
if( mask[x+1] )
dst[x+1] = scalar;
if( mask[x+2] )
dst[x+2] = scalar;
if( mask[x+3] )
dst[x+3] = scalar;
}
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = scalar;
}
}
typedef void (*SetMaskFunc)(const void* scalar, Mat& dst, const Mat& mask);
CopyMaskFunc g_copyMaskFuncTab[] =
{
0,
copyMask_<uchar>, // 1
copyMask_<ushort>, // 2
copyMask_<Vec<uchar,3> >, // 3
copyMask_<int>, // 4
0,
copyMask_<Vec<ushort,3> >, // 6
0,
copyMask_<int64>, // 8
0, 0, 0,
copyMask_<Vec<int,3> >, // 12
0, 0, 0,
copyMask_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
copyMask_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
copyMask_<Vec<int64,4> > // 32
};
static SetMaskFunc setMaskFuncTab[] =
{
0,
setMask_<uchar>, // 1
setMask_<ushort>, // 2
setMask_<Vec<uchar,3> >, // 3
setMask_<int>, // 4
0,
setMask_<Vec<ushort,3> >, // 6
0,
setMask_<int64>, // 8
0, 0, 0,
setMask_<Vec<int,3> >, // 12
0, 0, 0,
setMask_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
setMask_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
setMask_<Vec<int64,4> > // 32
};
/* dst = src */
void Mat::copyTo( Mat& dst ) const
{
if( data == dst.data )
return;
dst.create( rows, cols, type() );
Size sz = size();
const uchar* sptr = data;
uchar* dptr = dst.data;
sz.width *= (int)elemSize();
if( isContinuous() && dst.isContinuous() )
{
sz.width *= sz.height;
sz.height = 1;
}
for( ; sz.height--; sptr += step, dptr += dst.step )
memcpy( dptr, sptr, sz.width );
}
void Mat::copyTo( Mat& dst, const Mat& mask ) const
{
if( !mask.data )
{
copyTo(dst);
return;
}
uchar* data0 = dst.data;
dst.create( size(), type() );
if( dst.data != data0 ) // do not leave dst uninitialized
dst = Scalar(0);
getCopyMaskFunc((int)elemSize())(*this, dst, mask);
}
Mat& Mat::operator = (const Scalar& s)
{
Size sz = size();
uchar* dst = data;
sz.width *= (int)elemSize();
if( isContinuous() )
{
sz.width *= sz.height;
sz.height = 1;
}
if( s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0 )
{
for( ; sz.height--; dst += step )
memset( dst, 0, sz.width );
}
else
{
int t = type(), esz1 = (int)elemSize1();
double scalar[12];
scalarToRawData(s, scalar, t, 12);
int copy_len = 12*esz1;
uchar* dst_limit = dst + sz.width;
if( sz.height-- )
{
while( dst + copy_len <= dst_limit )
{
memcpy( dst, scalar, copy_len );
dst += copy_len;
}
memcpy( dst, scalar, dst_limit - dst );
}
if( sz.height > 0 )
{
dst = dst_limit - sz.width + step;
for( ; sz.height--; dst += step )
memcpy( dst, data, sz.width );
}
}
return *this;
}
Mat& Mat::setTo(const Scalar& s, const Mat& mask)
{
if( !mask.data )
*this = s;
else
{
CV_Assert( channels() <= 4 );
SetMaskFunc func = setMaskFuncTab[elemSize()];
CV_Assert( func != 0 );
double buf[4];
scalarToRawData(s, buf, type(), 0);
func(buf, *this, mask);
}
return *this;
}
template<typename T> static void
flipHoriz_( const Mat& srcmat, Mat& dstmat, bool flipv )
{
uchar* dst0 = dstmat.data;
size_t srcstep = srcmat.step;
int dststep = (int)dstmat.step;
Size size = srcmat.size();
if( flipv )
{
dst0 += (size.height - 1)*dststep;
dststep = -dststep;
}
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcstep*y);
T* dst = (T*)(dst0 + dststep*y);
for( int i = 0; i < (size.width + 1)/2; i++ )
{
T t0 = src[i], t1 = src[size.width - i - 1];
dst[i] = t1; dst[size.width - i - 1] = t0;
}
}
}
typedef void (*FlipHorizFunc)( const Mat& src, Mat& dst, bool flipv );
static void
flipVert( const Mat& srcmat, Mat& dstmat )
{
const uchar* src = srcmat.data;
uchar* dst = dstmat.data;
size_t srcstep = srcmat.step, dststep = dstmat.step;
Size size = srcmat.size();
const uchar* src1 = src + (size.height - 1)*srcstep;
uchar* dst1 = dst + (size.height - 1)*dststep;
size.width *= (int)srcmat.elemSize();
for( int y = 0; y < (size.height + 1)/2; y++, src += srcstep, src1 -= srcstep,
dst += dststep, dst1 -= dststep )
{
int i = 0;
if( ((size_t)(src)|(size_t)(dst)|(size_t)src1|(size_t)dst1) % sizeof(int) == 0 )
{
for( ; i <= size.width - 16; i += 16 )
{
int t0 = ((int*)(src + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
t0 = ((int*)(src + i))[1];
t1 = ((int*)(src1 + i))[1];
((int*)(dst + i))[1] = t1;
((int*)(dst1 + i))[1] = t0;
t0 = ((int*)(src + i))[2];
t1 = ((int*)(src1 + i))[2];
((int*)(dst + i))[2] = t1;
((int*)(dst1 + i))[2] = t0;
t0 = ((int*)(src + i))[3];
t1 = ((int*)(src1 + i))[3];
((int*)(dst + i))[3] = t1;
((int*)(dst1 + i))[3] = t0;
}
for( ; i <= size.width - 4; i += 4 )
{
int t0 = ((int*)(src + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
}
}
for( ; i < size.width; i++ )
{
uchar t0 = src[i];
uchar t1 = src1[i];
dst[i] = t1;
dst1[i] = t0;
}
}
}
void flip( const Mat& src, Mat& dst, int flip_mode )
{
static FlipHorizFunc tab[] =
{
0,
flipHoriz_<uchar>, // 1
flipHoriz_<ushort>, // 2
flipHoriz_<Vec<uchar,3> >, // 3
flipHoriz_<int>, // 4
0,
flipHoriz_<Vec<ushort,3> >, // 6
0,
flipHoriz_<int64>, // 8
0, 0, 0,
flipHoriz_<Vec<int,3> >, // 12
0, 0, 0,
flipHoriz_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
flipHoriz_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
flipHoriz_<Vec<int64,4> > // 32
};
dst.create( src.size(), src.type() );
if( flip_mode == 0 )
flipVert( src, dst );
else
{
int esz = (int)src.elemSize();
CV_Assert( esz <= 32 );
FlipHorizFunc func = tab[esz];
CV_Assert( func != 0 );
if( flip_mode > 0 )
func( src, dst, false );
else if( src.data != dst.data )
func( src, dst, true );
else
{
func( dst, dst, false );
flipVert( dst, dst );
}
}
}
void repeat(const Mat& src, int ny, int nx, Mat& dst)
{
dst.create(src.rows*ny, src.cols*nx, src.type());
Size ssize = src.size(), dsize = dst.size();
int esz = (int)src.elemSize();
int x, y;
ssize.width *= esz; dsize.width *= esz;
for( y = 0; y < ssize.height; y++ )
{
for( x = 0; x < dsize.width; x += ssize.width )
memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width );
}
for( ; y < dsize.height; y++ )
memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width );
}
}
/* dst = src */
CV_IMPL void
cvCopy( const void* srcarr, void* dstarr, const void* maskarr )
{
if( CV_IS_SPARSE_MAT(srcarr) && CV_IS_SPARSE_MAT(dstarr))
{
CV_Assert( maskarr == 0 );
CvSparseMat* src1 = (CvSparseMat*)srcarr;
CvSparseMat* dst1 = (CvSparseMat*)dstarr;
CvSparseMatIterator iterator;
CvSparseNode* node;
dst1->dims = src1->dims;
memcpy( dst1->size, src1->size, src1->dims*sizeof(src1->size[0]));
dst1->valoffset = src1->valoffset;
dst1->idxoffset = src1->idxoffset;
cvClearSet( dst1->heap );
if( src1->heap->active_count >= dst1->hashsize*CV_SPARSE_HASH_RATIO )
{
cvFree( &dst1->hashtable );
dst1->hashsize = src1->hashsize;
dst1->hashtable =
(void**)cvAlloc( dst1->hashsize*sizeof(dst1->hashtable[0]));
}
memset( dst1->hashtable, 0, dst1->hashsize*sizeof(dst1->hashtable[0]));
for( node = cvInitSparseMatIterator( src1, &iterator );
node != 0; node = cvGetNextSparseNode( &iterator ))
{
CvSparseNode* node_copy = (CvSparseNode*)cvSetNew( dst1->heap );
int tabidx = node->hashval & (dst1->hashsize - 1);
CV_MEMCPY_AUTO( node_copy, node, dst1->heap->elem_size );
node_copy->next = (CvSparseNode*)dst1->hashtable[tabidx];
dst1->hashtable[tabidx] = node_copy;
}
return;
}
cv::Mat src = cv::cvarrToMat(srcarr, false, true, 1), dst = cv::cvarrToMat(dstarr, false, true, 1);
CV_Assert( src.depth() == dst.depth() && src.size() == dst.size() );
int coi1 = 0, coi2 = 0;
if( CV_IS_IMAGE(srcarr) )
coi1 = cvGetImageCOI((const IplImage*)srcarr);
if( CV_IS_IMAGE(dstarr) )
coi2 = cvGetImageCOI((const IplImage*)dstarr);
if( coi1 || coi2 )
{
CV_Assert( (coi1 != 0 || src.channels() == 1) &&
(coi2 != 0 || dst.channels() == 1) );
int pair[] = { std::max(coi1-1, 0), std::max(coi2-1, 0) };
cv::mixChannels( &src, 1, &dst, 1, pair, 1 );
return;
}
else
CV_Assert( src.channels() == dst.channels() );
if( !maskarr )
src.copyTo(dst);
else
src.copyTo(dst, cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSet( void* arr, CvScalar value, const void* maskarr )
{
cv::Mat m = cv::cvarrToMat(arr);
if( !maskarr )
m = value;
else
m.setTo(value, cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSetZero( CvArr* arr )
{
if( CV_IS_SPARSE_MAT(arr) )
{
CvSparseMat* mat1 = (CvSparseMat*)arr;
cvClearSet( mat1->heap );
if( mat1->hashtable )
memset( mat1->hashtable, 0, mat1->hashsize*sizeof(mat1->hashtable[0]));
return;
}
cv::Mat m = cv::cvarrToMat(arr);
m = cv::Scalar(0);
}
CV_IMPL void
cvFlip( const CvArr* srcarr, CvArr* dstarr, int flip_mode )
{
cv::Mat src = cv::cvarrToMat(srcarr);
cv::Mat dst;
if (!dstarr)
dst = src;
else
dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() && src.size() == dst.size() );
cv::flip( src, dst, flip_mode );
}
CV_IMPL void
cvRepeat( const CvArr* srcarr, CvArr* dstarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() &&
dst.rows % src.rows == 0 && dst.cols % src.cols == 0 );
cv::repeat(src, dst.rows/src.rows, dst.cols/src.cols, dst);
}
/* End of file. */

File diff suppressed because it is too large Load Diff

2334
modules/core/src/drawing.cpp Normal file

File diff suppressed because it is too large Load Diff

2634
modules/core/src/dxt.cpp Normal file

File diff suppressed because it is too large Load Diff

211
modules/core/src/flann.cpp Normal file
View File

@@ -0,0 +1,211 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
#include "precomp.hpp"
#include "flann/flann.hpp"
namespace cv
{
namespace flann {
::flann::Index* LinearIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::flann::Matrix class so it can be constructed with a const float*
::flann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::flann::Index(mat, ::flann::LinearIndexParams());
}
::flann::Index* KDTreeIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::flann::Matrix class so it can be constructed with a const float*
::flann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::flann::Index(mat, ::flann::KDTreeIndexParams(trees));
}
::flann::Index* KMeansIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::flann::Matrix class so it can be constructed with a const float*
::flann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::flann::Index(mat, ::flann::KMeansIndexParams(branching,iterations, (::flann_centers_init_t)centers_init, cb_index));
}
::flann::Index* CompositeIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::flann::Matrix class so it can be constructed with a const float*
::flann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::flann::Index(mat, ::flann::CompositeIndexParams(trees, branching, iterations, (::flann_centers_init_t)centers_init, cb_index));
}
::flann::Index* AutotunedIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::flann::Matrix class so it can be constructed with a const float*
::flann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::flann::Index(mat, ::flann::AutotunedIndexParams(target_precision, build_weight, memory_weight, sample_fraction));
}
::flann::Index* SavedIndexParams::createIndex(const Mat& dataset) const
{
CV_Assert(dataset.type() == CV_32F);
CV_Assert(dataset.isContinuous());
// TODO: fix ::flann::Matrix class so it can be constructed with a const float*
::flann::Matrix<float> mat(dataset.rows, dataset.cols, (float*)dataset.ptr<float>(0));
return new ::flann::Index(mat, ::flann::SavedIndexParams(filename));
}
Index::Index(const Mat& dataset, const IndexParams& params)
{
nnIndex = params.createIndex(dataset);
}
Index::~Index()
{
delete nnIndex;
}
void Index::knnSearch(const vector<float>& query, vector<int>& indices, vector<float>& dists, int knn, const SearchParams& searchParams)
{
::flann::Matrix<float> m_query(1, query.size(), (float*)&query[0]);
::flann::Matrix<int> m_indices(1, indices.size(), &indices[0]);
::flann::Matrix<float> m_dists(1, dists.size(), &dists[0]);
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,::flann::SearchParams(searchParams.checks));
}
void Index::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const SearchParams& searchParams)
{
CV_Assert(queries.type() == CV_32F);
CV_Assert(queries.isContinuous());
::flann::Matrix<float> m_queries(queries.rows, queries.cols, (float*)queries.ptr<float>(0));
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::flann::Matrix<int> m_indices(indices.rows, indices.cols, (int*)indices.ptr<int>(0));
CV_Assert(dists.type() == CV_32F);
CV_Assert(dists.isContinuous());
::flann::Matrix<float> m_dists(dists.rows, dists.cols, (float*)dists.ptr<float>(0));
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn,::flann::SearchParams(searchParams.checks));
}
int Index::radiusSearch(const vector<float>& query, vector<int>& indices, vector<float>& dists, float radius, const SearchParams& searchParams)
{
::flann::Matrix<float> m_query(1, query.size(), (float*)&query[0]);
::flann::Matrix<int> m_indices(1, indices.size(), &indices[0]);
::flann::Matrix<float> m_dists(1, dists.size(), &dists[0]);
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,::flann::SearchParams(searchParams.checks));
}
int Index::radiusSearch(const Mat& query, Mat& indices, Mat& dists, float radius, const SearchParams& searchParams)
{
CV_Assert(query.type() == CV_32F);
CV_Assert(query.isContinuous());
::flann::Matrix<float> m_query(query.rows, query.cols, (float*)query.ptr<float>(0));
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::flann::Matrix<int> m_indices(indices.rows, indices.cols, (int*)indices.ptr<int>(0));
CV_Assert(dists.type() == CV_32F);
CV_Assert(dists.isContinuous());
::flann::Matrix<float> m_dists(dists.rows, dists.cols, (float*)dists.ptr<float>(0));
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,::flann::SearchParams(searchParams.checks));
}
void Index::save(string filename)
{
nnIndex->save(filename);
}
int Index::size() const
{
return nnIndex->size();
}
int Index::veclen() const
{
return nnIndex->veclen();
}
int hierarchicalClustering(const Mat& features, Mat& centers, const KMeansIndexParams& params)
{
CV_Assert(features.type() == CV_32F);
CV_Assert(features.isContinuous());
::flann::Matrix<float> m_features(features.rows, features.cols, (float*)features.ptr<float>(0));
CV_Assert(features.type() == CV_32F);
CV_Assert(features.isContinuous());
::flann::Matrix<float> m_centers(centers.rows, centers.cols, (float*)centers.ptr<float>(0));
return ::flann::hierarchicalClustering(m_features, m_centers, ::flann::KMeansIndexParams(params.branching, params.iterations,
(::flann_centers_init_t)params.centers_init, params.cb_index));
}
}
}

1466
modules/core/src/lapack.cpp Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

3037
modules/core/src/matmul.cpp Normal file

File diff suppressed because it is too large Load Diff

3117
modules/core/src/matrix.cpp Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,45 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

View File

@@ -0,0 +1,410 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _CXCORE_INTERNAL_H_
#define _CXCORE_INTERNAL_H_
#if defined _MSC_VER && _MSC_VER >= 1200
// disable warnings related to inline functions
#pragma warning( disable: 4251 4711 4710 4514 )
#endif
#include "opencv2/core/core.hpp"
#include "opencv2/core/core_c.h"
#include "opencv2/core/internal.hpp"
#include <assert.h>
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define CV_MEMCPY_CHAR( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
const char* _icv_memcpy_src_ = (const char*)(src); \
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++ ) \
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_]; \
}
#define CV_MEMCPY_INT( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
int* _icv_memcpy_dst_ = (int*)(dst); \
const int* _icv_memcpy_src_ = (const int*)(src); \
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 && \
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
\
for(_icv_memcpy_i_=0;_icv_memcpy_i_<_icv_memcpy_len_;_icv_memcpy_i_++) \
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_];\
}
#define CV_MEMCPY_AUTO( dst, src, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
const char* _icv_memcpy_src_ = (const char*)(src); \
if( (_icv_memcpy_len_ & (sizeof(int)-1)) == 0 ) \
{ \
assert( ((size_t)_icv_memcpy_src_&(sizeof(int)-1)) == 0 && \
((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; \
_icv_memcpy_i_+=sizeof(int) ) \
{ \
*(int*)(_icv_memcpy_dst_+_icv_memcpy_i_) = \
*(const int*)(_icv_memcpy_src_+_icv_memcpy_i_); \
} \
} \
else \
{ \
for(_icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++)\
_icv_memcpy_dst_[_icv_memcpy_i_] = _icv_memcpy_src_[_icv_memcpy_i_]; \
} \
}
#define CV_ZERO_CHAR( dst, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
char* _icv_memcpy_dst_ = (char*)(dst); \
\
for( _icv_memcpy_i_ = 0; _icv_memcpy_i_ < _icv_memcpy_len_; _icv_memcpy_i_++ ) \
_icv_memcpy_dst_[_icv_memcpy_i_] = '\0'; \
}
#define CV_ZERO_INT( dst, len ) \
{ \
size_t _icv_memcpy_i_, _icv_memcpy_len_ = (len); \
int* _icv_memcpy_dst_ = (int*)(dst); \
assert( ((size_t)_icv_memcpy_dst_&(sizeof(int)-1)) == 0 ); \
\
for(_icv_memcpy_i_=0;_icv_memcpy_i_<_icv_memcpy_len_;_icv_memcpy_i_++) \
_icv_memcpy_dst_[_icv_memcpy_i_] = 0; \
}
namespace cv
{
// -128.f ... 255.f
extern const float g_8x32fTab[];
#define CV_8TO32F(x) cv::g_8x32fTab[(x)+128]
extern const ushort g_8x16uSqrTab[];
#define CV_SQR_8U(x) cv::g_8x16uSqrTab[(x)+255]
extern const char* g_HersheyGlyphs[];
extern const uchar g_Saturate8u[];
#define CV_FAST_CAST_8U(t) (assert(-256 <= (t) && (t) <= 512), cv::g_Saturate8u[(t)+256])
#define CV_MIN_8U(a,b) ((a) - CV_FAST_CAST_8U((a) - (b)))
#define CV_MAX_8U(a,b) ((a) + CV_FAST_CAST_8U((b) - (a)))
typedef void (*CopyMaskFunc)(const Mat& src, Mat& dst, const Mat& mask);
extern CopyMaskFunc g_copyMaskFuncTab[];
static inline CopyMaskFunc getCopyMaskFunc(int esz)
{
CV_Assert( (unsigned)esz <= 32U );
CopyMaskFunc func = g_copyMaskFuncTab[esz];
CV_Assert( func != 0 );
return func;
}
#if defined WIN32 || defined _WIN32
void deleteThreadAllocData();
void deleteThreadRNGData();
#endif
template<typename T1, typename T2=T1, typename T3=T1> struct OpAdd
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a + b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpSub
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a - b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpRSub
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(b - a); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpMul
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a * b); }
};
template<typename T1, typename T2=T1, typename T3=T1> struct OpDiv
{
typedef T1 type1;
typedef T2 type2;
typedef T3 rtype;
T3 operator ()(T1 a, T2 b) const { return saturate_cast<T3>(a / b); }
};
template<typename T> struct OpMin
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::min(a, b); }
};
template<typename T> struct OpMax
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::max(a, b); }
};
inline Size getContinuousSize( const Mat& m1, int widthScale=1 )
{
return m1.isContinuous() ? Size(m1.cols*m1.rows*widthScale, 1) :
Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2, int widthScale=1 )
{
return (m1.flags & m2.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
inline Size getContinuousSize( const Mat& m1, const Mat& m2,
const Mat& m3, const Mat& m4,
const Mat& m5, int widthScale=1 )
{
return (m1.flags & m2.flags & m3.flags & m4.flags & m5.flags & Mat::CONTINUOUS_FLAG) != 0 ?
Size(m1.cols*m1.rows*widthScale, 1) : Size(m1.cols*widthScale, m1.rows);
}
struct NoVec
{
int operator()(const void*, const void*, void*, int) const { return 0; }
};
template<class Op, class VecOp> static void
binaryOpC1_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat )
{
Op op; VecOp vecOp;
typedef typename Op::type1 T1;
typedef typename Op::type2 T2;
typedef typename Op::rtype DT;
const T1* src1 = (const T1*)srcmat1.data;
const T2* src2 = (const T2*)srcmat2.data;
DT* dst = (DT*)dstmat.data;
size_t step1 = srcmat1.step/sizeof(src1[0]);
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
if( size.width == 1 )
{
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
dst[0] = op( src1[0], src2[0] );
return;
}
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
{
int x = vecOp(src1, src2, dst, size.width);
for( ; x <= size.width - 4; x += 4 )
{
DT f0, f1;
f0 = op( src1[x], src2[x] );
f1 = op( src1[x+1], src2[x+1] );
dst[x] = f0;
dst[x+1] = f1;
f0 = op(src1[x+2], src2[x+2]);
f1 = op(src1[x+3], src2[x+3]);
dst[x+2] = f0;
dst[x+3] = f1;
}
for( ; x < size.width; x++ )
dst[x] = op( src1[x], src2[x] );
}
}
typedef void (*BinaryFunc)(const Mat& src1, const Mat& src2, Mat& dst);
template<class Op> static void
binarySOpCn_( const Mat& srcmat, Mat& dstmat, const Scalar& _scalar )
{
Op op;
typedef typename Op::type1 T;
typedef typename Op::type2 WT;
typedef typename Op::rtype DT;
const T* src0 = (const T*)srcmat.data;
DT* dst0 = (DT*)dstmat.data;
size_t step1 = srcmat.step/sizeof(src0[0]);
size_t step = dstmat.step/sizeof(dst0[0]);
int cn = dstmat.channels();
Size size = getContinuousSize( srcmat, dstmat, cn );
WT scalar[12];
_scalar.convertTo(scalar, cn, 12);
for( ; size.height--; src0 += step1, dst0 += step )
{
int i, len = size.width;
const T* src = src0;
T* dst = dst0;
for( ; (len -= 12) >= 0; dst += 12, src += 12 )
{
DT t0 = op(src[0], scalar[0]);
DT t1 = op(src[1], scalar[1]);
dst[0] = t0; dst[1] = t1;
t0 = op(src[2], scalar[2]);
t1 = op(src[3], scalar[3]);
dst[2] = t0; dst[3] = t1;
t0 = op(src[4], scalar[4]);
t1 = op(src[5], scalar[5]);
dst[4] = t0; dst[5] = t1;
t0 = op(src[6], scalar[6]);
t1 = op(src[7], scalar[7]);
dst[6] = t0; dst[7] = t1;
t0 = op(src[8], scalar[8]);
t1 = op(src[9], scalar[9]);
dst[8] = t0; dst[9] = t1;
t0 = op(src[10], scalar[10]);
t1 = op(src[11], scalar[11]);
dst[10] = t0; dst[11] = t1;
}
for( (len) += 12, i = 0; i < (len); i++ )
dst[i] = op((WT)src[i], scalar[i]);
}
}
template<class Op> static void
binarySOpC1_( const Mat& srcmat, Mat& dstmat, double _scalar )
{
Op op;
typedef typename Op::type1 T;
typedef typename Op::type2 WT;
typedef typename Op::rtype DT;
WT scalar = saturate_cast<WT>(_scalar);
const T* src = (const T*)srcmat.data;
DT* dst = (DT*)dstmat.data;
size_t step1 = srcmat.step/sizeof(src[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = srcmat.size();
size.width *= srcmat.channels();
if( srcmat.isContinuous() && dstmat.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
for( ; size.height--; src += step1, dst += step )
{
int x;
for( x = 0; x <= size.width - 4; x += 4 )
{
DT f0 = op( src[x], scalar );
DT f1 = op( src[x+1], scalar );
dst[x] = f0;
dst[x+1] = f1;
f0 = op( src[x+2], scalar );
f1 = op( src[x+3], scalar );
dst[x+2] = f0;
dst[x+3] = f1;
}
for( ; x < size.width; x++ )
dst[x] = op( src[x], scalar );
}
}
typedef void (*BinarySFuncCn)(const Mat& src1, Mat& dst, const Scalar& scalar);
typedef void (*BinarySFuncC1)(const Mat& src1, Mat& dst, double scalar);
}
#endif /*_CXCORE_INTERNAL_H_*/

753
modules/core/src/rand.cpp Normal file
View File

@@ -0,0 +1,753 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Filling CvMat/IplImage instances with random numbers
//
// */
#include "precomp.hpp"
namespace cv
{
///////////////////////////// Functions Declaration //////////////////////////////////////
/*
Multiply-with-carry generator is used here:
temp = ( A*X(n) + carry )
X(n+1) = temp mod (2^32)
carry = temp / (2^32)
*/
#define RNG_NEXT(x) ((uint64)(unsigned)(x)*RNG::A + ((x) >> 32))
/***************************************************************************************\
* Pseudo-Random Number Generators (PRNGs) *
\***************************************************************************************/
template<typename T> static void
RandBits_( Mat& _arr, uint64* state, const void* _param )
{
uint64 temp = *state;
const int* param = (const int*)_param;
int small_flag = (param[12]|param[13]|param[14]|param[15]) <= 255;
Size size = getContinuousSize(_arr,_arr.channels());
for( int y = 0; y < size.height; y++ )
{
T* arr = (T*)(_arr.data + _arr.step*y);
int i, k = 3;
const int* p = param;
if( !small_flag )
{
for( i = 0; i <= size.width - 4; i += 4 )
{
int t0, t1;
temp = RNG_NEXT(temp);
t0 = ((int)temp & p[i + 12]) + p[i];
temp = RNG_NEXT(temp);
t1 = ((int)temp & p[i + 13]) + p[i+1];
arr[i] = saturate_cast<T>(t0);
arr[i+1] = saturate_cast<T>(t1);
temp = RNG_NEXT(temp);
t0 = ((int)temp & p[i + 14]) + p[i+2];
temp = RNG_NEXT(temp);
t1 = ((int)temp & p[i + 15]) + p[i+3];
arr[i+2] = saturate_cast<T>(t0);
arr[i+3] = saturate_cast<T>(t1);
if( !--k )
{
k = 3;
p -= 12;
}
}
}
else
{
for( i = 0; i <= size.width - 4; i += 4 )
{
int t0, t1, t;
temp = RNG_NEXT(temp);
t = (int)temp;
t0 = (t & p[i + 12]) + p[i];
t1 = ((t >> 8) & p[i + 13]) + p[i+1];
arr[i] = saturate_cast<T>(t0);
arr[i+1] = saturate_cast<T>(t1);
t0 = ((t >> 16) & p[i + 14]) + p[i + 2];
t1 = ((t >> 24) & p[i + 15]) + p[i + 3];
arr[i+2] = saturate_cast<T>(t0);
arr[i+3] = saturate_cast<T>(t1);
if( !--k )
{
k = 3;
p -= 12;
}
}
}
for( ; i < size.width; i++ )
{
int t0;
temp = RNG_NEXT(temp);
t0 = ((int)temp & p[i + 12]) + p[i];
arr[i] = saturate_cast<T>(t0);
}
}
*state = temp;
}
struct DivStruct
{
unsigned d;
unsigned M;
int sh1, sh2;
int delta;
};
template<typename T> static void
Randi_( Mat& _arr, uint64* state, const void* _param )
{
uint64 temp = *state;
const int* param = (const int*)_param;
Size size = getContinuousSize(_arr,_arr.channels());
int i, k, cn = _arr.channels();
DivStruct ds[12];
for( k = 0; k < cn; k++ )
{
ds[k].delta = param[k];
ds[k].d = (unsigned)(param[k+12] - param[k]);
int l = 0;
while(((uint64)1 << l) < ds[k].d)
l++;
ds[k].M = (unsigned)(((uint64)1 << 32)*(((uint64)1 << l) - ds[k].d)/ds[k].d) + 1;
ds[k].sh1 = min(l, 1);
ds[k].sh2 = max(l - 1, 0);
}
for( ; k < 12; k++ )
ds[k] = ds[k - cn];
for( int y = 0; y < size.height; y++ )
{
T* arr = (T*)(_arr.data + _arr.step*y);
const DivStruct* p = ds;
unsigned t0, t1, v0, v1;
for( i = 0, k = 3; i <= size.width - 4; i += 4 )
{
temp = RNG_NEXT(temp);
t0 = (unsigned)temp;
temp = RNG_NEXT(temp);
t1 = (unsigned)temp;
v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32);
v1 = (unsigned)(((uint64)t1 * p[i+1].M) >> 32);
v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2;
v1 = (v1 + ((t1 - v1) >> p[i+1].sh1)) >> p[i+1].sh2;
v0 = t0 - v0*p[i].d + p[i].delta;
v1 = t1 - v1*p[i+1].d + p[i+1].delta;
arr[i] = saturate_cast<T>((int)v0);
arr[i+1] = saturate_cast<T>((int)v1);
temp = RNG_NEXT(temp);
t0 = (unsigned)temp;
temp = RNG_NEXT(temp);
t1 = (unsigned)temp;
v0 = (unsigned)(((uint64)t0 * p[i+2].M) >> 32);
v1 = (unsigned)(((uint64)t1 * p[i+3].M) >> 32);
v0 = (v0 + ((t0 - v0) >> p[i+2].sh1)) >> p[i+2].sh2;
v1 = (v1 + ((t1 - v1) >> p[i+3].sh1)) >> p[i+3].sh2;
v0 = t0 - v0*p[i+2].d + p[i+2].delta;
v1 = t1 - v1*p[i+3].d + p[i+3].delta;
arr[i+2] = saturate_cast<T>((int)v0);
arr[i+3] = saturate_cast<T>((int)v1);
if( !--k )
{
k = 3;
p -= 12;
}
}
for( ; i < size.width; i++ )
{
temp = RNG_NEXT(temp);
t0 = (unsigned)temp;
v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32);
v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2;
v0 = t0 - v0*p[i].d + p[i].delta;
arr[i] = saturate_cast<T>((int)v0);
}
}
*state = temp;
}
static void Randf_( Mat& _arr, uint64* state, const void* _param )
{
uint64 temp = *state;
const float* param = (const float*)_param;
Size size = getContinuousSize(_arr,_arr.channels());
for( int y = 0; y < size.height; y++ )
{
float* arr = (float*)(_arr.data + _arr.step*y);
int i, k = 3;
const float* p = param;
for( i = 0; i <= size.width - 4; i += 4 )
{
float f0, f1;
temp = RNG_NEXT(temp);
f0 = (int)temp*p[i+12] + p[i];
temp = RNG_NEXT(temp);
f1 = (int)temp*p[i+13] + p[i+1];
arr[i] = f0; arr[i+1] = f1;
temp = RNG_NEXT(temp);
f0 = (int)temp*p[i+14] + p[i+2];
temp = RNG_NEXT(temp);
f1 = (int)temp*p[i+15] + p[i+3];
arr[i+2] = f0; arr[i+3] = f1;
if( !--k )
{
k = 3;
p -= 12;
}
}
for( ; i < size.width; i++ )
{
temp = RNG_NEXT(temp);
arr[i] = (int)temp*p[i+12] + p[i];
}
}
*state = temp;
}
static void
Randd_( Mat& _arr, uint64* state, const void* _param )
{
uint64 temp = *state;
const double* param = (const double*)_param;
Size size = getContinuousSize(_arr,_arr.channels());
int64 v = 0;
for( int y = 0; y < size.height; y++ )
{
double* arr = (double*)(_arr.data + _arr.step*y);
int i, k = 3;
const double* p = param;
for( i = 0; i <= size.width - 4; i += 4 )
{
double f0, f1;
temp = RNG_NEXT(temp);
v = (temp >> 32)|(temp << 32);
f0 = v*p[i+12] + p[i];
temp = RNG_NEXT(temp);
v = (temp >> 32)|(temp << 32);
f1 = v*p[i+13] + p[i+1];
arr[i] = f0; arr[i+1] = f1;
temp = RNG_NEXT(temp);
v = (temp >> 32)|(temp << 32);
f0 = v*p[i+14] + p[i+2];
temp = RNG_NEXT(temp);
v = (temp >> 32)|(temp << 32);
f1 = v*p[i+15] + p[i+3];
arr[i+2] = f0; arr[i+3] = f1;
if( !--k )
{
k = 3;
p -= 12;
}
}
for( ; i < size.width; i++ )
{
temp = RNG_NEXT(temp);
v = (temp >> 32)|(temp << 32);
arr[i] = v*p[i+12] + p[i];
}
}
*state = temp;
}
/*
The code below implements the algorithm described in
"The Ziggurat Method for Generating Random Variables"
by Marsaglia and Tsang, Journal of Statistical Software.
*/
static void
Randn_0_1_32f_C1R( float* arr, int len, uint64* state )
{
const float r = 3.442620f; // The start of the right tail
const float rng_flt = 2.3283064365386962890625e-10f; // 2^-32
static unsigned kn[128];
static float wn[128], fn[128];
uint64 temp = *state;
static bool initialized=false;
int i;
if( !initialized )
{
const double m1 = 2147483648.0;
double dn = 3.442619855899, tn = dn, vn = 9.91256303526217e-3;
// Set up the tables
double q = vn/std::exp(-.5*dn*dn);
kn[0] = (unsigned)((dn/q)*m1);
kn[1] = 0;
wn[0] = (float)(q/m1);
wn[127] = (float)(dn/m1);
fn[0] = 1.f;
fn[127] = (float)std::exp(-.5*dn*dn);
for(i=126;i>=1;i--)
{
dn = std::sqrt(-2.*std::log(vn/dn+std::exp(-.5*dn*dn)));
kn[i+1] = (unsigned)((dn/tn)*m1);
tn = dn;
fn[i] = (float)std::exp(-.5*dn*dn);
wn[i] = (float)(dn/m1);
}
initialized = true;
}
for( i = 0; i < len; i++ )
{
float x, y;
for(;;)
{
int hz = (int)temp;
temp = RNG_NEXT(temp);
int iz = hz & 127;
x = hz*wn[iz];
if( (unsigned)std::abs(hz) < kn[iz] )
break;
if( iz == 0) // iz==0, handles the base strip
{
do
{
x = (unsigned)temp*rng_flt;
temp = RNG_NEXT(temp);
y = (unsigned)temp*rng_flt;
temp = RNG_NEXT(temp);
x = (float)(-std::log(x+FLT_MIN)*0.2904764);
y = (float)-std::log(y+FLT_MIN);
} // .2904764 is 1/r
while( y + y < x*x );
x = hz > 0 ? r + x : -r - x;
break;
}
// iz > 0, handle the wedges of other strips
y = (unsigned)temp*rng_flt;
temp = RNG_NEXT(temp);
if( fn[iz] + y*(fn[iz - 1] - fn[iz]) < std::exp(-.5*x*x) )
break;
}
arr[i] = x;
}
*state = temp;
}
double RNG::gaussian(double sigma)
{
float temp;
Randn_0_1_32f_C1R( &temp, 1, &state );
return temp*sigma;
}
template<typename T, typename PT> static void
Randn_( Mat& _arr, uint64* state, const void* _param )
{
const int RAND_BUF_SIZE = 96;
float buffer[RAND_BUF_SIZE];
const PT* param = (const PT*)_param;
Size size = getContinuousSize(_arr, _arr.channels());
for( int y = 0; y < size.height; y++ )
{
T* arr = (T*)(_arr.data + _arr.step*y);
int i, j, len = RAND_BUF_SIZE;
for( i = 0; i < size.width; i += RAND_BUF_SIZE )
{
int k = 3;
const PT* p = param;
if( i + len > size.width )
len = size.width - i;
Randn_0_1_32f_C1R( buffer, len, state );
for( j = 0; j <= len - 4; j += 4 )
{
PT f0, f1;
f0 = buffer[j]*p[j+12] + p[j];
f1 = buffer[j+1]*p[j+13] + p[j+1];
arr[i+j] = saturate_cast<T>(f0);
arr[i+j+1] = saturate_cast<T>(f1);
f0 = buffer[j+2]*p[j+14] + p[j+2];
f1 = buffer[j+3]*p[j+15] + p[j+3];
arr[i+j+2] = saturate_cast<T>(f0);
arr[i+j+3] = saturate_cast<T>(f1);
if( --k == 0 )
{
k = 3;
p -= 12;
}
}
for( ; j < len; j++ )
arr[i+j] = saturate_cast<T>(buffer[j]*p[j+12] + p[j]);
}
}
}
typedef void (*RandFunc)(Mat& dst, uint64* state, const void* param);
void RNG::fill( Mat& mat, int disttype, const Scalar& param1, const Scalar& param2 )
{
static RandFunc rngtab[3][8] =
{
{
RandBits_<uchar>,
RandBits_<schar>,
RandBits_<ushort>,
RandBits_<short>,
RandBits_<int>, 0, 0, 0},
{Randi_<uchar>,
Randi_<schar>,
Randi_<ushort>,
Randi_<short>,
Randi_<int>,
Randf_, Randd_, 0},
{Randn_<uchar,float>,
Randn_<schar,float>,
Randn_<ushort,float>,
Randn_<short,float>,
Randn_<int,float>,
Randn_<float,float>,
Randn_<double,double>, 0}
};
int depth = mat.depth(), channels = mat.channels();
double dparam[2][12];
float fparam[2][12];
int iparam[2][12];
void* param = dparam;
int i, fast_int_mode = 0;
RandFunc func = 0;
CV_Assert( channels <= 4 );
if( disttype == UNIFORM )
{
if( depth <= CV_32S )
{
for( i = 0, fast_int_mode = 1; i < channels; i++ )
{
double a = min(param1.val[i], param2.val[i]);
double b = max(param1.val[i], param2.val[i]);
int t0 = iparam[0][i] = cvCeil(a);
int t1 = iparam[1][i] = cvFloor(b);
double diff = b - a;
fast_int_mode &= diff <= 4294967296. && ((t1-t0) & (t1-t0-1)) == 0;
}
if( fast_int_mode )
{
for( i = 0; i < channels; i++ )
iparam[1][i] = iparam[1][i] > iparam[0][i] ? iparam[1][i] - iparam[0][i] - 1 : 0;
}
for( ; i < 12; i++ )
{
int t0 = iparam[0][i - channels];
int t1 = iparam[1][i - channels];
iparam[0][i] = t0;
iparam[1][i] = t1;
}
func = rngtab[!fast_int_mode][depth];
param = iparam;
}
else
{
double scale = depth == CV_64F ?
5.4210108624275221700372640043497e-20 : // 2**-64
2.3283064365386962890625e-10; // 2**-32
// for each channel i compute such dparam[0][i] & dparam[1][i],
// so that a signed 32/64-bit integer X is transformed to
// the range [param1.val[i], param2.val[i]) using
// dparam[1][i]*X + dparam[0][i]
for( i = 0; i < channels; i++ )
{
double t0 = param1.val[i];
double t1 = param2.val[i];
dparam[0][i] = (t1 + t0)*0.5;
dparam[1][i] = (t1 - t0)*scale;
}
func = rngtab[1][depth];
param = dparam;
}
}
else if( disttype == CV_RAND_NORMAL )
{
for( i = 0; i < channels; i++ )
{
double t0 = param1.val[i];
double t1 = param2.val[i];
dparam[0][i] = t0;
dparam[1][i] = t1;
}
func = rngtab[2][depth];
param = dparam;
}
else
CV_Error( CV_StsBadArg, "Unknown distribution type" );
if( param == dparam )
{
for( i = channels; i < 12; i++ )
{
double t0 = dparam[0][i - channels];
double t1 = dparam[1][i - channels];
dparam[0][i] = t0;
dparam[1][i] = t1;
}
if( depth != CV_64F )
{
for( i = 0; i < 12; i++ )
{
fparam[0][i] = (float)dparam[0][i];
fparam[1][i] = (float)dparam[1][i];
}
param = fparam;
}
}
CV_Assert( func != 0);
func( mat, &state, param );
}
void RNG::fill( MatND& mat, int disttype, const Scalar& param1, const Scalar& param2 )
{
NAryMatNDIterator it(mat);
for( int i = 0; i < it.nplanes; i++, ++it )
fill( it.planes[0], disttype, param1, param2 );
}
#ifdef WIN32
#ifdef WINCE
# define TLS_OUT_OF_INDEXES ((DWORD)0xFFFFFFFF)
#endif
static DWORD tlsRNGKey = TLS_OUT_OF_INDEXES;
void deleteThreadRNGData()
{
if( tlsRNGKey != TLS_OUT_OF_INDEXES )
delete (RNG*)TlsGetValue( tlsRNGKey );
}
RNG& theRNG()
{
if( tlsRNGKey == TLS_OUT_OF_INDEXES )
{
tlsRNGKey = TlsAlloc();
CV_Assert(tlsRNGKey != TLS_OUT_OF_INDEXES);
}
RNG* rng = (RNG*)TlsGetValue( tlsRNGKey );
if( !rng )
{
rng = new RNG;
TlsSetValue( tlsRNGKey, rng );
}
return *rng;
}
#else
static pthread_key_t tlsRNGKey = 0;
static void deleteRNG(void* data)
{
delete (RNG*)data;
}
RNG& theRNG()
{
if( !tlsRNGKey )
{
int errcode = pthread_key_create(&tlsRNGKey, deleteRNG);
CV_Assert(errcode == 0);
}
RNG* rng = (RNG*)pthread_getspecific(tlsRNGKey);
if( !rng )
{
rng = new RNG;
pthread_setspecific(tlsRNGKey, rng);
}
return *rng;
}
#endif
template<typename T> static void
randShuffle_( Mat& _arr, RNG& rng, double iterFactor )
{
int sz = _arr.rows*_arr.cols, iters = cvRound(iterFactor*sz);
if( _arr.isContinuous() )
{
T* arr = (T*)_arr.data;
for( int i = 0; i < iters; i++ )
{
int j = (unsigned)rng % sz, k = (unsigned)rng % sz;
std::swap( arr[j], arr[k] );
}
}
else
{
uchar* data = _arr.data;
size_t step = _arr.step;
int cols = _arr.cols;
for( int i = 0; i < iters; i++ )
{
int j1 = (unsigned)rng % sz, k1 = (unsigned)rng % sz;
int j0 = j1/cols, k0 = k1/cols;
j1 -= j0*cols; k1 -= k0*cols;
std::swap( ((T*)(data + step*j0))[j1], ((T*)(data + step*k0))[k1] );
}
}
}
typedef void (*RandShuffleFunc)( Mat& dst, RNG& rng, double iterFactor );
void randShuffle( Mat& dst, double iterFactor, RNG* _rng )
{
RandShuffleFunc tab[] =
{
0,
randShuffle_<uchar>, // 1
randShuffle_<ushort>, // 2
randShuffle_<Vec<uchar,3> >, // 3
randShuffle_<int>, // 4
0,
randShuffle_<Vec<ushort,3> >, // 6
0,
randShuffle_<int64>, // 8
0, 0, 0,
randShuffle_<Vec<int,3> >, // 12
0, 0, 0,
randShuffle_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
randShuffle_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
randShuffle_<Vec<int64,4> > // 32
};
RNG& rng = _rng ? *_rng : theRNG();
CV_Assert( dst.elemSize() <= 32 );
RandShuffleFunc func = tab[dst.elemSize()];
CV_Assert( func != 0 );
func( dst, rng, iterFactor );
}
}
CV_IMPL void
cvRandArr( CvRNG* _rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 )
{
cv::Mat mat = cv::cvarrToMat(arr);
// !!! this will only work for current 64-bit MWC RNG !!!
cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG();
rng.fill(mat, disttype == CV_RAND_NORMAL ?
cv::RNG::NORMAL : cv::RNG::UNIFORM, param1, param2 );
}
CV_IMPL void cvRandShuffle( CvArr* arr, CvRNG* _rng, double iter_factor )
{
cv::Mat dst = cv::cvarrToMat(arr);
cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG();
cv::randShuffle( dst, iter_factor, &rng );
}
/* End of file. */

1342
modules/core/src/stat.cpp Normal file

File diff suppressed because it is too large Load Diff

720
modules/core/src/system.cpp Normal file
View File

@@ -0,0 +1,720 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#if defined WIN32 || defined WIN64 || defined _WIN64 || defined WINCE
#include <tchar.h>
#if defined _MSC_VER
#if _MSC_VER >= 1400
#include <intrin.h>
#elif defined _M_IX86
static void __cpuid(int* cpuid_data, int)
{
__asm
{
push ebx
push edi
mov edi, cpuid_data
mov eax, 1
cpuid
mov [edi], eax
mov [edi + 4], ebx
mov [edi + 8], ecx
mov [edi + 12], edx
pop edi
pop ebx
}
}
#endif
#endif
#else
#include <pthread.h>
#include <sys/time.h>
#include <time.h>
#ifdef __MACH__
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
#endif
#ifdef _OPENMP
#include "omp.h"
#endif
#include <stdarg.h>
namespace cv
{
struct HWFeatures
{
enum { MAX_FEATURE = CV_HARDWARE_MAX_FEATURE };
HWFeatures()
{
memset( have, 0, sizeof(have) );
x86_family = 0;
}
static HWFeatures initialize()
{
HWFeatures f;
int cpuid_data[4]={0,0,0,0};
#if defined _MSC_VER && (defined _M_IX86 || defined _M_X64)
__cpuid(cpuid_data, 1);
#elif defined __GNUC__ && (defined __i386__ || defined __x86_64__)
#ifdef __x86_64__
asm __volatile__
(
"movl $1, %%eax\n\t"
"cpuid\n\t"
:[eax]"=a"(cpuid_data[0]),[ebx]"=b"(cpuid_data[1]),[ecx]"=c"(cpuid_data[2]),[edx]"=d"(cpuid_data[3])
:
: "cc"
);
#else
asm volatile
(
"pushl %%ebx\n\t"
"movl $1,%%eax\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(cpuid_data[0]), "=c"(cpuid_data[2]), "=d"(cpuid_data[3])
:
: "cc"
);
#endif
#endif
f.x86_family = (cpuid_data[0] >> 8) & 15;
if( f.x86_family >= 6 )
{
f.have[CV_CPU_MMX] = (cpuid_data[3] & (1 << 23)) != 0;
f.have[CV_CPU_SSE] = (cpuid_data[3] & (1<<25)) != 0;
f.have[CV_CPU_SSE2] = (cpuid_data[3] & (1<<26)) != 0;
f.have[CV_CPU_SSE3] = (cpuid_data[2] & (1<<0)) != 0;
f.have[CV_CPU_SSSE3] = (cpuid_data[2] & (1<<9)) != 0;
f.have[CV_CPU_SSE4_1] = (cpuid_data[2] & (1<<19)) != 0;
f.have[CV_CPU_SSE4_2] = (cpuid_data[2] & (1<<20)) != 0;
f.have[CV_CPU_AVX] = (cpuid_data[2] & (1<<28)) != 0;
}
return f;
}
int x86_family;
bool have[MAX_FEATURE+1];
};
static HWFeatures featuresEnabled = HWFeatures::initialize(), featuresDisabled = HWFeatures();
static HWFeatures* currentFeatures = &featuresEnabled;
bool checkHardwareSupport(int feature)
{
CV_DbgAssert( 0 <= feature && feature <= CV_HARDWARE_MAX_FEATURE );
return currentFeatures->have[feature];
}
#ifdef HAVE_IPP
volatile bool useOptimizedFlag = true;
struct IPPInitializer
{
IPPInitializer() { ippStaticInit(); }
};
IPPInitializer ippInitializer;
#else
volatile bool useOptimizedFlag = false;
#endif
void setUseOptimized( bool flag )
{
useOptimizedFlag = flag;
currentFeatures = flag ? &featuresEnabled : &featuresDisabled;
}
bool useOptimized()
{
return useOptimizedFlag;
}
int64 getTickCount()
{
#if defined WIN32 || defined WIN64 || defined _WIN64 || defined WINCE
LARGE_INTEGER counter;
QueryPerformanceCounter( &counter );
return (int64)counter.QuadPart;
#elif defined __linux || defined __linux__
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return (int64)tp.tv_sec*1000000000 + tp.tv_nsec;
#elif defined __MACH__
return (int64)mach_absolute_time();
#else
struct timeval tv;
struct timezone tz;
gettimeofday( &tv, &tz );
return (int64)tv.tv_sec*1000000 + tv.tv_usec;
#endif
}
double getTickFrequency()
{
#if defined WIN32 || defined WIN64 || defined _WIN64 || defined WINCE
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
return (double)freq.QuadPart;
#elif defined __linux || defined __linux__
return 1e9;
#elif defined __MACH__
static double freq = 0;
if( freq == 0 )
{
mach_timebase_info_data_t sTimebaseInfo;
mach_timebase_info(&sTimebaseInfo);
freq = sTimebaseInfo.denom*1e9/sTimebaseInfo.numer;
}
return freq;
#else
return 1e6;
#endif
}
#if defined __GNUC__ && (defined __i386__ || defined __x86_64__ || defined __ppc__)
#if defined(__i386__)
int64 getCPUTickCount(void)
{
int64 x;
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
return x;
}
#elif defined(__x86_64__)
int64 getCPUTickCount(void)
{
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return (int64)lo | ((int64)hi << 32);
}
#elif defined(__ppc__)
int64 getCPUTickCount(void)
{
int64 result=0;
unsigned upper, lower, tmp;
__asm__ volatile(
"0: \n"
"\tmftbu %0 \n"
"\tmftb %1 \n"
"\tmftbu %2 \n"
"\tcmpw %2,%0 \n"
"\tbne 0b \n"
: "=r"(upper),"=r"(lower),"=r"(tmp)
);
return lower | ((int64)upper << 32);
}
#else
#error "RDTSC not defined"
#endif
#elif defined _MSC_VER && defined WIN32 && !defined _WIN64
int64 getCPUTickCount(void)
{
__asm _emit 0x0f;
__asm _emit 0x31;
}
#else
int64 getCPUTickCount()
{
return getTickCount();
}
#endif
static int numThreads = 0;
static int numProcs = 0;
int getNumThreads(void)
{
if( !numProcs )
setNumThreads(0);
return numThreads;
}
void setNumThreads( int
#ifdef _OPENMP
threads
#endif
)
{
if( !numProcs )
{
#ifdef _OPENMP
numProcs = omp_get_num_procs();
#else
numProcs = 1;
#endif
}
#ifdef _OPENMP
if( threads <= 0 )
threads = numProcs;
else
threads = MIN( threads, numProcs );
numThreads = threads;
#else
numThreads = 1;
#endif
}
int getThreadNum(void)
{
#ifdef _OPENMP
return omp_get_thread_num();
#else
return 0;
#endif
}
string format( const char* fmt, ... )
{
char buf[1 << 16];
va_list args;
va_start( args, fmt );
vsprintf( buf, fmt, args );
return string(buf);
}
static CvErrorCallback customErrorCallback = 0;
static void* customErrorCallbackData = 0;
static bool breakOnError = false;
bool setBreakOnError(bool value)
{
bool prevVal = breakOnError;
breakOnError = value;
return prevVal;
}
void error( const Exception& exc )
{
if (customErrorCallback != 0)
customErrorCallback(exc.code, exc.func.c_str(), exc.err.c_str(),
exc.file.c_str(), exc.line, customErrorCallbackData);
else
{
const char* errorStr = cvErrorStr(exc.code);
char buf[1 << 16];
sprintf( buf, "OpenCV Error: %s (%s) in %s, file %s, line %d",
errorStr, exc.err.c_str(), exc.func.size() > 0 ?
exc.func.c_str() : "unknown function", exc.file.c_str(), exc.line );
fprintf( stderr, "%s\n", buf );
fflush( stderr );
}
if(breakOnError)
{
static volatile int* p = 0;
*p = 0;
}
throw exc;
}
CvErrorCallback
redirectError( CvErrorCallback errCallback, void* userdata, void** prevUserdata)
{
if( prevUserdata )
*prevUserdata = customErrorCallbackData;
CvErrorCallback prevCallback = customErrorCallback;
customErrorCallback = errCallback;
customErrorCallbackData = userdata;
return prevCallback;
}
}
/*CV_IMPL int
cvGuiBoxReport( int code, const char *func_name, const char *err_msg,
const char *file, int line, void* )
{
#if (!defined WIN32 && !defined WIN64) || defined WINCE
return cvStdErrReport( code, func_name, err_msg, file, line, 0 );
#else
if( code != CV_StsBackTrace && code != CV_StsAutoTrace )
{
size_t msg_len = strlen(err_msg ? err_msg : "") + 1024;
char* message = (char*)alloca(msg_len);
char title[100];
wsprintf( message, "%s (%s)\nin function %s, %s(%d)\n\n"
"Press \"Abort\" to terminate application.\n"
"Press \"Retry\" to debug (if the app is running under debugger).\n"
"Press \"Ignore\" to continue (this is not safe).\n",
cvErrorStr(code), err_msg ? err_msg : "no description",
func_name, file, line );
wsprintf( title, "OpenCV GUI Error Handler" );
int answer = MessageBox( NULL, message, title, MB_ICONERROR|MB_ABORTRETRYIGNORE|MB_SYSTEMMODAL );
if( answer == IDRETRY )
{
CV_DBG_BREAK();
}
return answer != IDIGNORE;
}
return 0;
#endif
}*/
CV_IMPL int cvCheckHardwareSupport(int feature)
{
CV_DbgAssert( 0 <= feature && feature <= CV_HARDWARE_MAX_FEATURE );
return cv::currentFeatures->have[feature];
}
CV_IMPL int cvUseOptimized( int flag )
{
int prevMode = cv::useOptimizedFlag;
cv::setUseOptimized( flag != 0 );
return prevMode;
}
CV_IMPL int64 cvGetTickCount(void)
{
return cv::getTickCount();
}
CV_IMPL double cvGetTickFrequency(void)
{
return cv::getTickFrequency()*1e-6;
}
CV_IMPL void cvSetNumThreads(int nt)
{
cv::setNumThreads(nt);
}
CV_IMPL int cvGetNumThreads()
{
return cv::getNumThreads();
}
CV_IMPL int cvGetThreadNum()
{
return cv::getThreadNum();
}
CV_IMPL CvErrorCallback
cvRedirectError( CvErrorCallback errCallback, void* userdata, void** prevUserdata)
{
return cv::redirectError(errCallback, userdata, prevUserdata);
}
CV_IMPL int cvNulDevReport( int, const char*, const char*,
const char*, int, void* )
{
return 0;
}
CV_IMPL int cvStdErrReport( int, const char*, const char*,
const char*, int, void* )
{
return 0;
}
CV_IMPL int cvGuiBoxReport( int, const char*, const char*,
const char*, int, void* )
{
return 0;
}
CV_IMPL int cvGetErrInfo( const char**, const char**, const char**, int* )
{
return 0;
}
CV_IMPL const char* cvErrorStr( int status )
{
static char buf[256];
switch (status)
{
case CV_StsOk : return "No Error";
case CV_StsBackTrace : return "Backtrace";
case CV_StsError : return "Unspecified error";
case CV_StsInternal : return "Internal error";
case CV_StsNoMem : return "Insufficient memory";
case CV_StsBadArg : return "Bad argument";
case CV_StsNoConv : return "Iterations do not converge";
case CV_StsAutoTrace : return "Autotrace call";
case CV_StsBadSize : return "Incorrect size of input array";
case CV_StsNullPtr : return "Null pointer";
case CV_StsDivByZero : return "Division by zero occured";
case CV_BadStep : return "Image step is wrong";
case CV_StsInplaceNotSupported : return "Inplace operation is not supported";
case CV_StsObjectNotFound : return "Requested object was not found";
case CV_BadDepth : return "Input image depth is not supported by function";
case CV_StsUnmatchedFormats : return "Formats of input arguments do not match";
case CV_StsUnmatchedSizes : return "Sizes of input arguments do not match";
case CV_StsOutOfRange : return "One of arguments\' values is out of range";
case CV_StsUnsupportedFormat : return "Unsupported format or combination of formats";
case CV_BadCOI : return "Input COI is not supported";
case CV_BadNumChannels : return "Bad number of channels";
case CV_StsBadFlag : return "Bad flag (parameter or structure field)";
case CV_StsBadPoint : return "Bad parameter of type CvPoint";
case CV_StsBadMask : return "Bad type of mask argument";
case CV_StsParseError : return "Parsing error";
case CV_StsNotImplemented : return "The function/feature is not implemented";
case CV_StsBadMemBlock : return "Memory block has been corrupted";
case CV_StsAssert : return "Assertion failed";
};
sprintf(buf, "Unknown %s code %d", status >= 0 ? "status":"error", status);
return buf;
}
CV_IMPL int cvGetErrMode(void)
{
return 0;
}
CV_IMPL int cvSetErrMode(int)
{
return 0;
}
CV_IMPL int cvGetErrStatus()
{
return 0;
}
CV_IMPL void cvSetErrStatus(int)
{
}
CV_IMPL void cvError( int code, const char* func_name,
const char* err_msg,
const char* file_name, int line )
{
cv::error(cv::Exception(code, err_msg, func_name, file_name, line));
}
/* function, which converts int to int */
CV_IMPL int
cvErrorFromIppStatus( int status )
{
switch (status)
{
case CV_BADSIZE_ERR: return CV_StsBadSize;
case CV_BADMEMBLOCK_ERR: return CV_StsBadMemBlock;
case CV_NULLPTR_ERR: return CV_StsNullPtr;
case CV_DIV_BY_ZERO_ERR: return CV_StsDivByZero;
case CV_BADSTEP_ERR: return CV_BadStep ;
case CV_OUTOFMEM_ERR: return CV_StsNoMem;
case CV_BADARG_ERR: return CV_StsBadArg;
case CV_NOTDEFINED_ERR: return CV_StsError;
case CV_INPLACE_NOT_SUPPORTED_ERR: return CV_StsInplaceNotSupported;
case CV_NOTFOUND_ERR: return CV_StsObjectNotFound;
case CV_BADCONVERGENCE_ERR: return CV_StsNoConv;
case CV_BADDEPTH_ERR: return CV_BadDepth;
case CV_UNMATCHED_FORMATS_ERR: return CV_StsUnmatchedFormats;
case CV_UNSUPPORTED_COI_ERR: return CV_BadCOI;
case CV_UNSUPPORTED_CHANNELS_ERR: return CV_BadNumChannels;
case CV_BADFLAG_ERR: return CV_StsBadFlag;
case CV_BADRANGE_ERR: return CV_StsBadArg;
case CV_BADCOEF_ERR: return CV_StsBadArg;
case CV_BADFACTOR_ERR: return CV_StsBadArg;
case CV_BADPOINT_ERR: return CV_StsBadPoint;
default: return CV_StsError;
}
}
static CvModuleInfo cxcore_info = { 0, "cxcore", CV_VERSION, 0 };
CvModuleInfo *CvModule::first = 0, *CvModule::last = 0;
CvModule::CvModule( CvModuleInfo* _info )
{
cvRegisterModule( _info );
info = last;
}
CvModule::~CvModule()
{
if( info )
{
CvModuleInfo* p = first;
for( ; p != 0 && p->next != info; p = p->next )
;
if( p )
p->next = info->next;
if( first == info )
first = info->next;
if( last == info )
last = p;
free( info );
info = 0;
}
}
CV_IMPL int
cvRegisterModule( const CvModuleInfo* module )
{
CV_Assert( module != 0 && module->name != 0 && module->version != 0 );
size_t name_len = strlen(module->name);
size_t version_len = strlen(module->version);
CvModuleInfo* module_copy = (CvModuleInfo*)malloc( sizeof(*module_copy) +
name_len + 1 + version_len + 1 );
*module_copy = *module;
module_copy->name = (char*)(module_copy + 1);
module_copy->version = (char*)(module_copy + 1) + name_len + 1;
memcpy( (void*)module_copy->name, module->name, name_len + 1 );
memcpy( (void*)module_copy->version, module->version, version_len + 1 );
module_copy->next = 0;
if( CvModule::first == 0 )
CvModule::first = module_copy;
else
CvModule::last->next = module_copy;
CvModule::last = module_copy;
return 0;
}
CvModule cxcore_module( &cxcore_info );
CV_IMPL void
cvGetModuleInfo( const char* name, const char **version, const char **plugin_list )
{
static char joint_verinfo[1024] = "";
static char plugin_list_buf[1024] = "";
if( version )
*version = 0;
if( plugin_list )
*plugin_list = 0;
CvModuleInfo* module;
if( version )
{
if( name )
{
size_t i, name_len = strlen(name);
for( module = CvModule::first; module != 0; module = module->next )
{
if( strlen(module->name) == name_len )
{
for( i = 0; i < name_len; i++ )
{
int c0 = toupper(module->name[i]), c1 = toupper(name[i]);
if( c0 != c1 )
break;
}
if( i == name_len )
break;
}
}
if( !module )
CV_Error( CV_StsObjectNotFound, "The module is not found" );
*version = module->version;
}
else
{
char* ptr = joint_verinfo;
for( module = CvModule::first; module != 0; module = module->next )
{
sprintf( ptr, "%s: %s%s", module->name, module->version, module->next ? ", " : "" );
ptr += strlen(ptr);
}
*version = joint_verinfo;
}
}
if( plugin_list )
*plugin_list = plugin_list_buf;
}
#if defined CVAPI_EXPORTS && defined WIN32 && !defined WINCE
BOOL WINAPI DllMain( HINSTANCE, DWORD fdwReason, LPVOID )
{
if( fdwReason == DLL_THREAD_DETACH || fdwReason == DLL_PROCESS_DETACH )
{
cv::deleteThreadAllocData();
cv::deleteThreadRNGData();
}
return TRUE;
}
#endif
/* End of file. */

3512
modules/core/src/tables.cpp Normal file

File diff suppressed because it is too large Load Diff