"atomic bomb" commit. Reorganized OpenCV directory structure

This commit is contained in:
Vadim Pisarevsky
2010-05-11 17:44:00 +00:00
commit 127d6649a1
1761 changed files with 1766340 additions and 0 deletions

View File

@@ -0,0 +1,288 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install, copy or use the software.
//
// Copyright (C) 2009, Farhad Dadgostar
// Intel Corporation and third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#define ASD_INTENSITY_SET_PIXEL(pointer, qq) {(*pointer) = (unsigned char)qq;}
#define ASD_IS_IN_MOTION(pointer, v, threshold) ((abs((*(pointer)) - (v)) > (threshold)) ? true : false)
void CvAdaptiveSkinDetector::initData(IplImage *src, int widthDivider, int heightDivider)
{
CvSize imageSize = cvSize(src->width/widthDivider, src->height/heightDivider);
imgHueFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgShrinked = cvCreateImage(imageSize, IPL_DEPTH_8U, src->nChannels);
imgSaturationFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgMotionFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgTemp = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgFilteredFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgGrayFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgLastGrayFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
imgHSVFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 3);
};
CvAdaptiveSkinDetector::CvAdaptiveSkinDetector(int samplingDivider, int morphingMethod)
{
nSkinHueLowerBound = GSD_HUE_LT;
nSkinHueUpperBound = GSD_HUE_UT;
fHistogramMergeFactor = 0.05; // empirical result
fHuePercentCovered = 0.95; // empirical result
nMorphingMethod = morphingMethod;
nSamplingDivider = samplingDivider;
nFrameCount = 0;
nStartCounter = 0;
imgHueFrame = NULL;
imgMotionFrame = NULL;
imgTemp = NULL;
imgFilteredFrame = NULL;
imgShrinked = NULL;
imgGrayFrame = NULL;
imgLastGrayFrame = NULL;
imgSaturationFrame = NULL;
imgHSVFrame = NULL;
};
CvAdaptiveSkinDetector::~CvAdaptiveSkinDetector()
{
cvReleaseImage(&imgHueFrame);
cvReleaseImage(&imgSaturationFrame);
cvReleaseImage(&imgMotionFrame);
cvReleaseImage(&imgTemp);
cvReleaseImage(&imgFilteredFrame);
cvReleaseImage(&imgShrinked);
cvReleaseImage(&imgGrayFrame);
cvReleaseImage(&imgLastGrayFrame);
cvReleaseImage(&imgHSVFrame);
};
void CvAdaptiveSkinDetector::process(IplImage *inputBGRImage, IplImage *outputHueMask)
{
IplImage *src = inputBGRImage;
int h, v, i, l;
bool isInit = false;
nFrameCount++;
if (imgHueFrame == NULL)
{
isInit = true;
initData(src, nSamplingDivider, nSamplingDivider);
}
unsigned char *pShrinked, *pHueFrame, *pMotionFrame, *pLastGrayFrame, *pFilteredFrame, *pGrayFrame;
pShrinked = (unsigned char *)imgShrinked->imageData;
pHueFrame = (unsigned char *)imgHueFrame->imageData;
pMotionFrame = (unsigned char *)imgMotionFrame->imageData;
pLastGrayFrame = (unsigned char *)imgLastGrayFrame->imageData;
pFilteredFrame = (unsigned char *)imgFilteredFrame->imageData;
pGrayFrame = (unsigned char *)imgGrayFrame->imageData;
if ((src->width != imgHueFrame->width) || (src->height != imgHueFrame->height))
{
cvResize(src, imgShrinked);
cvCvtColor(imgShrinked, imgHSVFrame, CV_BGR2HSV);
}
else
{
cvCvtColor(src, imgHSVFrame, CV_BGR2HSV);
}
cvSplit(imgHSVFrame, imgHueFrame, imgSaturationFrame, imgGrayFrame, 0);
cvSetZero(imgMotionFrame);
cvSetZero(imgFilteredFrame);
l = imgHueFrame->height * imgHueFrame->width;
for (i = 0; i < l; i++)
{
v = (*pGrayFrame);
if ((v >= GSD_INTENSITY_LT) && (v <= GSD_INTENSITY_UT))
{
h = (*pHueFrame);
if ((h >= GSD_HUE_LT) && (h <= GSD_HUE_UT))
{
if ((h >= nSkinHueLowerBound) && (h <= nSkinHueUpperBound))
ASD_INTENSITY_SET_PIXEL(pFilteredFrame, h);
if (ASD_IS_IN_MOTION(pLastGrayFrame, v, 7))
ASD_INTENSITY_SET_PIXEL(pMotionFrame, h);
}
}
pShrinked += 3;
pGrayFrame++;
pLastGrayFrame++;
pMotionFrame++;
pHueFrame++;
pFilteredFrame++;
}
if (isInit)
cvCalcHist(&imgHueFrame, skinHueHistogram.fHistogram);
cvCopy(imgGrayFrame, imgLastGrayFrame);
cvErode(imgMotionFrame, imgTemp); // eliminate disperse pixels, which occur because of the camera noise
cvDilate(imgTemp, imgMotionFrame);
cvCalcHist(&imgMotionFrame, histogramHueMotion.fHistogram);
skinHueHistogram.mergeWith(&histogramHueMotion, fHistogramMergeFactor);
skinHueHistogram.findCurveThresholds(nSkinHueLowerBound, nSkinHueUpperBound, 1 - fHuePercentCovered);
switch (nMorphingMethod)
{
case MORPHING_METHOD_ERODE :
cvErode(imgFilteredFrame, imgTemp);
cvCopy(imgTemp, imgFilteredFrame);
break;
case MORPHING_METHOD_ERODE_ERODE :
cvErode(imgFilteredFrame, imgTemp);
cvErode(imgTemp, imgFilteredFrame);
break;
case MORPHING_METHOD_ERODE_DILATE :
cvErode(imgFilteredFrame, imgTemp);
cvDilate(imgTemp, imgFilteredFrame);
break;
}
if (outputHueMask != NULL)
cvCopy(imgFilteredFrame, outputHueMask);
};
//------------------------- Histogram for Adaptive Skin Detector -------------------------//
CvAdaptiveSkinDetector::Histogram::Histogram()
{
int histogramSize[] = { HistogramSize };
float range[] = { GSD_HUE_LT, GSD_HUE_UT };
float *ranges[] = { range };
fHistogram = cvCreateHist(1, histogramSize, CV_HIST_ARRAY, ranges, 1);
cvClearHist(fHistogram);
};
CvAdaptiveSkinDetector::Histogram::~Histogram()
{
cvReleaseHist(&fHistogram);
};
int CvAdaptiveSkinDetector::Histogram::findCoverageIndex(double surfaceToCover, int defaultValue)
{
float s = 0;
for (int i = 0; i < HistogramSize; i++)
{
s += cvGetReal1D( fHistogram->bins, i );
if (s >= surfaceToCover)
{
return i;
}
}
return defaultValue;
};
void CvAdaptiveSkinDetector::Histogram::findCurveThresholds(int &x1, int &x2, double percent)
{
float sum = 0;
for (int i = 0; i < HistogramSize; i++)
{
sum += cvGetReal1D( fHistogram->bins, i );
}
x1 = findCoverageIndex(sum * percent, -1);
x2 = findCoverageIndex(sum * (1-percent), -1);
if (x1 == -1)
x1 = GSD_HUE_LT;
else
x1 += GSD_HUE_LT;
if (x2 == -1)
x2 = GSD_HUE_UT;
else
x2 += GSD_HUE_LT;
};
void CvAdaptiveSkinDetector::Histogram::mergeWith(CvAdaptiveSkinDetector::Histogram *source, double weight)
{
float myweight = (float)(1-weight);
float maxVal1 = 0, maxVal2 = 0, *f1, *f2, ff1, ff2;
cvGetMinMaxHistValue(source->fHistogram, NULL, &maxVal2);
if (maxVal2 > 0 )
{
cvGetMinMaxHistValue(fHistogram, NULL, &maxVal1);
if (maxVal1 <= 0)
{
for (int i = 0; i < HistogramSize; i++)
{
f1 = (float*)cvPtr1D(fHistogram->bins, i);
f2 = (float*)cvPtr1D(source->fHistogram->bins, i);
(*f1) = (*f2);
}
}
else
{
for (int i = 0; i < HistogramSize; i++)
{
f1 = (float*)cvPtr1D(fHistogram->bins, i);
f2 = (float*)cvPtr1D(source->fHistogram->bins, i);
ff1 = ((*f1)/maxVal1)*myweight;
if (ff1 < 0)
ff1 = -ff1;
ff2 = (float)(((*f2)/maxVal2)*weight);
if (ff2 < 0)
ff2 = -ff2;
(*f1) = (ff1 + ff2);
}
}
}
};

1109
modules/contrib/src/ba.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,722 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install, copy or use the software.
//
// Copyright (C) 2009, Farhad Dadgostar
// Intel Corporation and third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
CvFuzzyPoint::CvFuzzyPoint(double _x, double _y)
{
x = _x;
y = _y;
};
bool CvFuzzyCurve::between(double x, double x1, double x2)
{
if ((x >= x1) && (x <= x2))
return true;
else if ((x >= x2) && (x <= x1))
return true;
return false;
};
CvFuzzyCurve::CvFuzzyCurve()
{
value = 0;
};
CvFuzzyCurve::~CvFuzzyCurve()
{
// nothing to do
};
void CvFuzzyCurve::setCentre(double _centre)
{
centre = _centre;
};
double CvFuzzyCurve::getCentre()
{
return centre;
};
void CvFuzzyCurve::clear()
{
points.clear();
};
void CvFuzzyCurve::addPoint(double x, double y)
{
CvFuzzyPoint *point;
point = new CvFuzzyPoint(x, y);
points.push_back(*point);
};
double CvFuzzyCurve::calcValue(double param)
{
int size = (int)points.size();
double x1, y1, x2, y2, m, y;
for (int i = 1; i < size; i++)
{
x1 = points[i-1].x;
x2 = points[i].x;
if (between(param, x1, x2)) {
y1 = points[i-1].y;
y2 = points[i].y;
if (x2 == x1)
return y2;
m = (y2-y1)/(x2-x1);
y = m*(param-x1)+y1;
return y;
}
}
return 0;
};
double CvFuzzyCurve::getValue()
{
return value;
};
void CvFuzzyCurve::setValue(double _value)
{
value = _value;
};
CvFuzzyFunction::CvFuzzyFunction()
{
// nothing to do
};
CvFuzzyFunction::~CvFuzzyFunction()
{
curves.clear();
};
void CvFuzzyFunction::addCurve(CvFuzzyCurve *curve, double value)
{
curves.push_back(*curve);
curve->setValue(value);
};
void CvFuzzyFunction::resetValues()
{
int numCurves = (int)curves.size();
for (int i = 0; i < numCurves; i++)
curves[i].setValue(0);
};
double CvFuzzyFunction::calcValue()
{
double s1 = 0, s2 = 0, v;
int numCurves = (int)curves.size();
for (int i = 0; i < numCurves; i++)
{
v = curves[i].getValue();
s1 += curves[i].getCentre() * v;
s2 += v;
}
if (s2 != 0)
return s1/s2;
else
return 0;
};
CvFuzzyCurve *CvFuzzyFunction::newCurve()
{
CvFuzzyCurve *c;
c = new CvFuzzyCurve();
addCurve(c);
return c;
};
CvFuzzyRule::CvFuzzyRule()
{
fuzzyInput1 = NULL;
fuzzyInput2 = NULL;
fuzzyOutput = NULL;
};
CvFuzzyRule::~CvFuzzyRule()
{
if (fuzzyInput1 != NULL)
delete fuzzyInput1;
if (fuzzyInput2 != NULL)
delete fuzzyInput2;
if (fuzzyOutput != NULL)
delete fuzzyOutput;
};
void CvFuzzyRule::setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1)
{
fuzzyInput1 = c1;
fuzzyInput2 = c2;
fuzzyOutput = o1;
};
double CvFuzzyRule::calcValue(double param1, double param2)
{
double v1, v2;
v1 = fuzzyInput1->calcValue(param1);
if (fuzzyInput2 != NULL)
{
v2 = fuzzyInput2->calcValue(param2);
if (v1 < v2)
return v1;
else
return v2;
}
else
return v1;
};
CvFuzzyCurve *CvFuzzyRule::getOutputCurve()
{
return fuzzyOutput;
};
CvFuzzyController::CvFuzzyController()
{
// nothing to do
};
CvFuzzyController::~CvFuzzyController()
{
int size = (int)rules.size();
for(int i = 0; i < size; i++)
delete rules[i];
};
void CvFuzzyController::addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1)
{
CvFuzzyRule *f = new CvFuzzyRule();
rules.push_back(f);
f->setRule(c1, c2, o1);
};
double CvFuzzyController::calcOutput(double param1, double param2)
{
double v;
CvFuzzyFunction list;
int size = (int)rules.size();
for(int i = 0; i < size; i++)
{
v = rules[i]->calcValue(param1, param2);
if (v != 0)
list.addCurve(rules[i]->getOutputCurve(), v);
}
v = list.calcValue();
return v;
};
CvFuzzyMeanShiftTracker::FuzzyResizer::FuzzyResizer()
{
CvFuzzyCurve *i1L, *i1M, *i1H;
CvFuzzyCurve *oS, *oZE, *oE;
CvFuzzyCurve *c;
double MedStart = 0.1, MedWidth = 0.15;
c = iInput.newCurve();
c->addPoint(0, 1);
c->addPoint(0.1, 0);
c->setCentre(0);
i1L = c;
c = iInput.newCurve();
c->addPoint(0.05, 0);
c->addPoint(MedStart, 1);
c->addPoint(MedStart+MedWidth, 1);
c->addPoint(MedStart+MedWidth+0.05, 0);
c->setCentre(MedStart+(MedWidth/2));
i1M = c;
c = iInput.newCurve();
c->addPoint(MedStart+MedWidth, 0);
c->addPoint(1, 1);
c->addPoint(1000, 1);
c->setCentre(1);
i1H = c;
c = iOutput.newCurve();
c->addPoint(-10000, 1);
c->addPoint(-5, 1);
c->addPoint(-0.5, 0);
c->setCentre(-5);
oS = c;
c = iOutput.newCurve();
c->addPoint(-1, 0);
c->addPoint(-0.05, 1);
c->addPoint(0.05, 1);
c->addPoint(1, 0);
c->setCentre(0);
oZE = c;
c = iOutput.newCurve();
c->addPoint(-0.5, 0);
c->addPoint(5, 1);
c->addPoint(1000, 1);
c->setCentre(5);
oE = c;
fuzzyController.addRule(i1L, NULL, oS);
fuzzyController.addRule(i1M, NULL, oZE);
fuzzyController.addRule(i1H, NULL, oE);
};
int CvFuzzyMeanShiftTracker::FuzzyResizer::calcOutput(double edgeDensity, double density)
{
return (int)fuzzyController.calcOutput(edgeDensity, density);
};
CvFuzzyMeanShiftTracker::SearchWindow::SearchWindow()
{
x = 0;
y = 0;
width = 0;
height = 0;
maxWidth = 0;
maxHeight = 0;
xGc = 0;
yGc = 0;
m00 = 0;
m01 = 0;
m10 = 0;
m11 = 0;
m02 = 0;
m20 = 0;
ellipseHeight = 0;
ellipseWidth = 0;
ellipseAngle = 0;
density = 0;
depthLow = 0;
depthHigh = 0;
fuzzyResizer = NULL;
};
CvFuzzyMeanShiftTracker::SearchWindow::~SearchWindow()
{
if (fuzzyResizer != NULL)
delete fuzzyResizer;
}
void CvFuzzyMeanShiftTracker::SearchWindow::setSize(int _x, int _y, int _width, int _height)
{
x = _x;
y = _y;
width = _width;
height = _height;
if (x < 0)
x = 0;
if (y < 0)
y = 0;
if (x + width > maxWidth)
width = maxWidth - x;
if (y + height > maxHeight)
height = maxHeight - y;
};
void CvFuzzyMeanShiftTracker::SearchWindow::initDepthValues(IplImage *maskImage, IplImage *depthMap)
{
unsigned int d=0, mind = 0xFFFF, maxd = 0, m0 = 0, m1 = 0, mc, dd;
unsigned char *data = NULL;
unsigned short *depthData = NULL;
for (int j = 0; j < height; j++)
{
data = (unsigned char *)(maskImage->imageData + (maskImage->widthStep * (j + y)) + x);
if (depthMap)
depthData = (unsigned short *)(depthMap->imageData + (depthMap->widthStep * (j + y)) + x);
for (int i = 0; i < width; i++)
{
if (*data)
{
m0 += 1;
if (depthData)
{
if (*depthData)
{
m1 += d;
if (d < mind)
mind = d;
if (d > maxd)
maxd = d;
}
depthData++;
}
}
data++;
}
}
if (m0 > 0)
{
mc = m1/m0;
if ((mc - mind) > (maxd - mc))
dd = maxd - mc;
else
dd = mc - mind;
dd = dd - dd/10;
depthHigh = mc + dd;
depthLow = mc - dd;
}
else
{
depthHigh = 32000;
depthLow = 0;
}
};
bool CvFuzzyMeanShiftTracker::SearchWindow::shift()
{
if ((xGc != (width/2)) || (yGc != (height/2)))
{
setSize(x + (xGc-(width/2)), y + (yGc-(height/2)), width, height);
return true;
}
else
{
return false;
}
};
void CvFuzzyMeanShiftTracker::SearchWindow::extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth)
{
m00 = 0;
m10 = 0;
m01 = 0;
m11 = 0;
density = 0;
m02 = 0;
m20 = 0;
ellipseHeight = 0;
ellipseWidth = 0;
maxWidth = maskImage->width;
maxHeight = maskImage->height;
if (initDepth)
initDepthValues(maskImage, depthMap);
unsigned char *maskData = NULL;
unsigned short *depthData = NULL, depth;
bool isOk;
unsigned long count;
verticalEdgeLeft = 0;
verticalEdgeRight = 0;
horizontalEdgeTop = 0;
horizontalEdgeBottom = 0;
for (int j = 0; j < height; j++)
{
maskData = (unsigned char *)(maskImage->imageData + (maskImage->widthStep * (j + y)) + x);
if (depthMap)
depthData = (unsigned short *)(depthMap->imageData + (depthMap->widthStep * (j + y)) + x);
count = 0;
for (int i = 0; i < width; i++)
{
if (*maskData)
{
isOk = true;
if (depthData)
{
depth = (*depthData);
if ((depth > depthHigh) || (depth < depthLow))
isOk = false;
depthData++;
}
if (isOk)
{
m00++;
m01 += j;
m10 += i;
m02 += (j * j);
m20 += (i * i);
m11 += (j * i);
if (i == 0)
verticalEdgeLeft++;
else if (i == width-1)
verticalEdgeRight++;
else if (j == 0)
horizontalEdgeTop++;
else if (j == height-1)
horizontalEdgeBottom++;
count++;
}
}
maskData++;
}
}
if (m00 > 0)
{
xGc = (m10 / m00);
yGc = (m01 / m00);
double a, b, c, e1, e2, e3;
a = ((double)m20/(double)m00)-(xGc * xGc);
b = 2*(((double)m11/(double)m00)-(xGc * yGc));
c = ((double)m02/(double)m00)-(yGc * yGc);
e1 = a+c;
e3 = a-c;
e2 = sqrt((b*b)+(e3*e3));
ellipseHeight = int(sqrt(0.5*(e1+e2)));
ellipseWidth = int(sqrt(0.5*(e1-e2)));
if (e3 == 0)
ellipseAngle = 0;
else
ellipseAngle = 0.5*atan(b/e3);
density = (double)m00/(double)(width * height);
}
else
{
xGc = width / 2;
yGc = height / 2;
ellipseHeight = 0;
ellipseWidth = 0;
ellipseAngle = 0;
density = 0;
}
};
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh) {
int x1 = horizontalEdgeTop;
int x2 = horizontalEdgeBottom;
int y1 = verticalEdgeLeft;
int y2 = verticalEdgeRight;
int gx = (width*2)/5;
int gy = (height*2)/5;
int lx = width/10;
int ly = height/10;
resizeDy = 0;
resizeDh = 0;
resizeDx = 0;
resizeDw = 0;
if (x1 > gx) {
resizeDy = -1;
} else if (x1 < lx) {
resizeDy = +1;
}
if (x2 > gx) {
resizeDh = resizeDy + 1;
} else if (x2 < lx) {
resizeDh = - (resizeDy + 1);
} else {
resizeDh = - resizeDy;
}
if (y1 > gy) {
resizeDx = -1;
} else if (y1 < ly) {
resizeDx = +1;
}
if (y2 > gy) {
resizeDw = resizeDx + 1;
} else if (y2 < ly) {
resizeDw = - (resizeDx + 1);
} else {
resizeDw = - resizeDx;
}
};
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh)
{
int newWidth, newHeight, dx, dy;
double px, py;
newWidth = int(sqrt(double(m00)*1.3));
newHeight = int(newWidth*1.2);
dx = (newWidth - width);
dy = (newHeight - height);
px = (double)xGc/(double)width;
py = (double)yGc/(double)height;
resizeDx = (int)(px*dx);
resizeDy = (int)(py*dy);
resizeDw = (int)((1-px)*dx);
resizeDh = (int)((1-py)*dy);
};
void CvFuzzyMeanShiftTracker::SearchWindow::getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh)
{
double dx1=0, dx2, dy1, dy2;
resizeDy = 0;
resizeDh = 0;
resizeDx = 0;
resizeDw = 0;
if (fuzzyResizer == NULL)
fuzzyResizer = new FuzzyResizer();
dx2 = fuzzyResizer->calcOutput(double(verticalEdgeRight)/double(height), density);
if (dx1 == dx2)
{
resizeDx = int(-dx1);
resizeDw = int(dx1+dx2);
}
dy1 = fuzzyResizer->calcOutput(double(horizontalEdgeTop)/double(width), density);
dy2 = fuzzyResizer->calcOutput(double(horizontalEdgeBottom)/double(width), density);
dx1 = fuzzyResizer->calcOutput(double(verticalEdgeLeft)/double(height), density);
dx2 = fuzzyResizer->calcOutput(double(verticalEdgeRight)/double(height), density);
//if (dx1 == dx2)
{
resizeDx = int(-dx1);
resizeDw = int(dx1+dx2);
}
dy1 = fuzzyResizer->calcOutput(double(horizontalEdgeTop)/double(width), density);
dy2 = fuzzyResizer->calcOutput(double(horizontalEdgeBottom)/double(width), density);
//if (dy1 == dy2)
{
resizeDy = int(-dy1);
resizeDh = int(dy1+dy2);
}
};
bool CvFuzzyMeanShiftTracker::SearchWindow::meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth)
{
numShifts = 0;
do
{
extractInfo(maskImage, depthMap, initDepth);
if (! shift())
return true;
} while (++numShifts < maxIteration);
return false;
};
void CvFuzzyMeanShiftTracker::findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth)
{
int resizeDx, resizeDy, resizeDw, resizeDh;
resizeDx = 0;
resizeDy = 0;
resizeDw = 0;
resizeDh = 0;
searchWindow.numIters = 0;
for (int i = 0; i < maxIteration; i++)
{
searchWindow.numIters++;
searchWindow.meanShift(maskImage, depthMap, MaxMeanShiftIteration, initDepth);
switch (resizeMethod)
{
case rmEdgeDensityLinear :
searchWindow.getResizeAttribsEdgeDensityLinear(resizeDx, resizeDy, resizeDw, resizeDh);
break;
case rmEdgeDensityFuzzy :
//searchWindow.getResizeAttribsEdgeDensityLinear(resizeDx, resizeDy, resizeDw, resizeDh);
searchWindow.getResizeAttribsEdgeDensityFuzzy(resizeDx, resizeDy, resizeDw, resizeDh);
break;
case rmInnerDensity :
searchWindow.getResizeAttribsInnerDensity(resizeDx, resizeDy, resizeDw, resizeDh);
break;
default:
searchWindow.getResizeAttribsEdgeDensityLinear(resizeDx, resizeDy, resizeDw, resizeDh);
}
searchWindow.ldx = resizeDx;
searchWindow.ldy = resizeDy;
searchWindow.ldw = resizeDw;
searchWindow.ldh = resizeDh;
if ((resizeDx == 0) && (resizeDy == 0) && (resizeDw == 0) && (resizeDh == 0))
break;
searchWindow.setSize(searchWindow.x + resizeDx, searchWindow.y + resizeDy, searchWindow.width + resizeDw, searchWindow.height + resizeDh);
}
};
CvFuzzyMeanShiftTracker::CvFuzzyMeanShiftTracker()
{
searchMode = tsSetWindow;
};
CvFuzzyMeanShiftTracker::~CvFuzzyMeanShiftTracker()
{
// nothing to do
};
void CvFuzzyMeanShiftTracker::track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass)
{
bool initDepth = false;
if (resetSearch)
searchMode = tsSetWindow;
switch (searchMode)
{
case tsDisabled:
return;
case tsSearching:
return;
case tsSetWindow:
kernel.maxWidth = maskImage->width;
kernel.maxHeight = maskImage->height;
kernel.setSize(0, 0, maskImage->width, maskImage->height);
initDepth = true;
case tsTracking:
searchMode = tsSearching;
findOptimumSearchWindow(kernel, maskImage, depthMap, MaxSetSizeIteration, resizeMethod, initDepth);
if ((kernel.density == 0) || (kernel.m00 < minKernelMass))
searchMode = tsSetWindow;
else
searchMode = tsTracking;
}
};

View File

@@ -0,0 +1,340 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
namespace cv
{
const size_t MAX_STACK_SIZE = 255;
const size_t MAX_LEAFS = 8;
bool checkIfNodeOutsideSphere(const Octree::Node& node, const Point3f& c, float r)
{
if (node.x_max < (c.x - r) || node.y_max < (c.y - r) || node.z_max < (c.z - r))
return true;
if ((c.x + r) < node.x_min || (c.y + r) < node.y_min || (c.z + r) < node.z_min)
return true;
return false;
}
bool checkIfNodeInsideSphere(const Octree::Node& node, const Point3f& c, float r)
{
r *= r;
float d2_xmin = (node.x_min - c.x) * (node.x_min - c.x);
float d2_ymin = (node.y_min - c.y) * (node.y_min - c.y);
float d2_zmin = (node.z_min - c.z) * (node.z_min - c.z);
if (d2_xmin + d2_ymin + d2_zmin > r)
return false;
float d2_zmax = (node.z_max - c.z) * (node.z_max - c.z);
if (d2_xmin + d2_ymin + d2_zmax > r)
return false;
float d2_ymax = (node.y_max - c.y) * (node.y_max - c.y);
if (d2_xmin + d2_ymax + d2_zmin > r)
return false;
if (d2_xmin + d2_ymax + d2_zmax > r)
return false;
float d2_xmax = (node.x_max - c.x) * (node.x_max - c.x);
if (d2_xmax + d2_ymin + d2_zmin > r)
return false;
if (d2_xmax + d2_ymin + d2_zmax > r)
return false;
if (d2_xmax + d2_ymax + d2_zmin > r)
return false;
if (d2_xmax + d2_ymax + d2_zmax > r)
return false;
return true;
}
void fillMinMax(const vector<Point3f>& points, Octree::Node& node)
{
node.x_max = node.y_max = node.z_max = std::numeric_limits<float>::min();
node.x_min = node.y_min = node.z_min = std::numeric_limits<float>::max();
for (size_t i = 0; i < points.size(); ++i)
{
const Point3f& point = points[i];
if (node.x_max < point.x)
node.x_max = point.x;
if (node.y_max < point.y)
node.y_max = point.y;
if (node.z_max < point.z)
node.z_max = point.z;
if (node.x_min > point.x)
node.x_min = point.x;
if (node.y_min > point.y)
node.y_min = point.y;
if (node.z_min > point.z)
node.z_min = point.z;
}
}
size_t findSubboxForPoint(const Point3f& point, const Octree::Node& node)
{
size_t ind_x = point.x < (node.x_max + node.x_min) / 2 ? 0 : 1;
size_t ind_y = point.y < (node.y_max + node.y_min) / 2 ? 0 : 1;
size_t ind_z = point.z < (node.z_max + node.z_min) / 2 ? 0 : 1;
return (ind_x << 2) + (ind_y << 1) + (ind_z << 0);
}
void initChildBox(const Octree::Node& parent, size_t boxIndex, Octree::Node& child)
{
child.x_min = child.x_max = (parent.x_max + parent.x_min) / 2;
child.y_min = child.y_max = (parent.y_max + parent.y_min) / 2;
child.z_min = child.z_max = (parent.z_max + parent.z_min) / 2;
if ((boxIndex >> 0) & 1)
child.z_max = parent.z_max;
else
child.z_min = parent.z_min;
if ((boxIndex >> 1) & 1)
child.y_max = parent.y_max;
else
child.y_min = parent.y_min;
if ((boxIndex >> 2) & 1)
child.x_max = parent.x_max;
else
child.x_min = parent.x_min;
}
////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////// Octree //////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
Octree::Octree()
{
}
Octree::Octree(const vector<Point3f>& points3d, int maxLevels, int minPoints)
{
buildTree(points3d, maxLevels, minPoints);
}
Octree::~Octree()
{
}
void Octree::getPointsWithinSphere(const Point3f& center, float radius, vector<Point3f>& out) const
{
out.clear();
if (nodes.empty())
return;
int stack[MAX_STACK_SIZE];
int pos = 0;
stack[pos] = 0;
while (pos >= 0)
{
const Node& cur = nodes[stack[pos--]];
if (checkIfNodeOutsideSphere(cur, center, radius))
continue;
if (checkIfNodeInsideSphere(cur, center, radius))
{
size_t sz = out.size();
out.resize(sz + cur.end - cur.begin);
for (int i = cur.begin; i < cur.end; ++i)
out[sz++] = points[i];
continue;
}
if (cur.isLeaf)
{
double r2 = radius * radius;
size_t sz = out.size();
out.resize(sz + (cur.end - cur.begin));
for (int i = cur.begin; i < cur.end; ++i)
{
const Point3f& point = points[i];
double dx = (point.x - center.x);
double dy = (point.y - center.y);
double dz = (point.z - center.z);
double dist2 = dx * dx + dy * dy + dz * dz;
if (dist2 < r2)
out[sz++] = point;
};
out.resize(sz);
continue;
}
if (cur.children[0])
stack[++pos] = cur.children[0];
if (cur.children[1])
stack[++pos] = cur.children[1];
if (cur.children[2])
stack[++pos] = cur.children[2];
if (cur.children[3])
stack[++pos] = cur.children[3];
if (cur.children[4])
stack[++pos] = cur.children[4];
if (cur.children[5])
stack[++pos] = cur.children[5];
if (cur.children[6])
stack[++pos] = cur.children[6];
if (cur.children[7])
stack[++pos] = cur.children[7];
}
}
void Octree::buildTree(const vector<Point3f>& points3d, int maxLevels, int minPoints)
{
assert((size_t)maxLevels * 8 < MAX_STACK_SIZE);
points.resize(points3d.size());
std::copy(points3d.begin(), points3d.end(), points.begin());
this->minPoints = minPoints;
nodes.clear();
nodes.push_back(Node());
Node& root = nodes[0];
fillMinMax(points, root);
root.isLeaf = true;
root.maxLevels = maxLevels;
root.begin = 0;
root.end = (int)points.size();
for (size_t i = 0; i < MAX_LEAFS; i++)
root.children[i] = 0;
if (maxLevels != 1 && (root.end - root.begin) > minPoints)
{
root.isLeaf = false;
buildNext(0);
}
}
void Octree::buildNext(size_t nodeInd)
{
size_t size = nodes[nodeInd].end - nodes[nodeInd].begin;
vector<size_t> boxBorders(MAX_LEAFS+1, 0);
vector<size_t> boxIndices(size);
vector<Point3f> tempPoints(size);
for (int i = nodes[nodeInd].begin, j = 0; i < nodes[nodeInd].end; ++i, ++j)
{
const Point3f& p = points[i];
size_t subboxInd = findSubboxForPoint(p, nodes[nodeInd]);
boxBorders[subboxInd+1]++;
boxIndices[j] = subboxInd;
tempPoints[j] = p;
}
for (size_t i = 1; i < boxBorders.size(); ++i)
boxBorders[i] += boxBorders[i-1];
vector<size_t> writeInds(boxBorders.begin(), boxBorders.end());
for (size_t i = 0; i < size; ++i)
{
size_t boxIndex = boxIndices[i];
Point3f& curPoint = tempPoints[i];
size_t copyTo = nodes[nodeInd].begin + writeInds[boxIndex]++;
points[copyTo] = curPoint;
}
for (size_t i = 0; i < MAX_LEAFS; ++i)
{
if (boxBorders[i] == boxBorders[i+1])
continue;
nodes.push_back(Node());
Node& child = nodes.back();
initChildBox(nodes[nodeInd], i, child);
child.isLeaf = true;
child.maxLevels = nodes[nodeInd].maxLevels - 1;
child.begin = nodes[nodeInd].begin + (int)boxBorders[i+0];
child.end = nodes[nodeInd].begin + (int)boxBorders[i+1];
for (size_t k = 0; k < MAX_LEAFS; k++)
child.children[k] = 0;
nodes[nodeInd].children[i] = (int)(nodes.size() - 1);
if (child.maxLevels != 1 && (child.end - child.begin) > minPoints)
{
child.isLeaf = false;
buildNext(nodes.size() - 1);
}
}
}
}

View File

@@ -0,0 +1,44 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

View File

@@ -0,0 +1,57 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#if _MSC_VER >= 1200
#pragma warning( disable: 4251 4710 4711 4514 4996 ) /* function AAA selected for automatic inline expansion */
#endif
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/internal.hpp"
#endif

View File

@@ -0,0 +1,364 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <limits>
#include <utility>
#include <algorithm>
#include <math.h>
//#define _SUBPIX_VERBOSE
#undef max
namespace cv {
void drawCircles(Mat& img, const vector<Point2f>& corners, const vector<float>& radius)
{
for(size_t i = 0; i < corners.size(); i++)
{
circle(img, corners[i], cvRound(radius[i]), CV_RGB(255, 0, 0));
}
}
int histQuantile(const MatND& hist, float quantile)
{
if(hist.dims > 1) return -1; // works for 1D histograms only
float cur_sum = 0;
float total_sum = (float)sum(hist).val[0];
float quantile_sum = total_sum*quantile;
for(int j = 0; j < hist.size[0]; j++)
{
cur_sum += (float)hist.at<double>(j);
if(cur_sum > quantile_sum)
{
return j;
}
}
return hist.size[0] - 1;
}
bool is_smaller(const std::pair<int, float>& p1, const std::pair<int, float>& p2)
{
return p1.second < p2.second;
}
void orderContours(const vector<vector<Point> >& contours, Point2f point, vector<std::pair<int, float> >& order)
{
order.clear();
for(size_t i = 0; i < contours.size(); i++)
{
double min_dist = std::numeric_limits<double>::max();
for(size_t j = 0; j < contours[i].size(); j++)
{
double dist = norm(Point2f((float)contours[i][j].x, (float)contours[i][j].y) - point);
min_dist = MIN(min_dist, dist);
}
order.push_back(std::pair<int, float>(i, (float)min_dist));
}
std::sort(order.begin(), order.end(), is_smaller);
}
// fit second order curve to a set of 2D points
void fitCurve2Order(const vector<Point2f>& /*points*/, vector<float>& /*curve*/)
{
// TBD
}
void findCurvesCross(const vector<float>& /*curve1*/, const vector<float>& /*curve2*/, Point2f& /*cross_point*/)
{
}
void findLinesCrossPoint(Point2f origin1, Point2f dir1, Point2f origin2, Point2f dir2, Point2f& cross_point)
{
float det = dir2.x*dir1.y - dir2.y*dir1.x;
Point2f offset = origin2 - origin1;
float alpha = (dir2.x*offset.y - dir2.y*offset.x)/det;
cross_point = origin1 + dir1*alpha;
}
void findCorner(const vector<Point>& contour, Point2f point, Point2f& corner)
{
// find the nearest point
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
Rect brect = boundingRect(Mat(contour));
// find corner idx
for(size_t i = 0; i < contour.size(); i++)
{
double dist = norm(Point2f((float)contour[i].x, (float)contour[i].y) - point);
if(dist < min_dist)
{
min_dist = dist;
min_idx = i;
}
}
assert(min_idx >= 0);
// temporary solution, have to make something more precise
corner = contour[min_idx];
return;
}
void findCorner(const vector<Point2f>& contour, Point2f point, Point2f& corner)
{
// find the nearest point
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
Rect brect = boundingRect(Mat(contour));
// find corner idx
for(size_t i = 0; i < contour.size(); i++)
{
double dist = norm(contour[i] - point);
if(dist < min_dist)
{
min_dist = dist;
min_idx = i;
}
}
assert(min_idx >= 0);
// temporary solution, have to make something more precise
corner = contour[min_idx];
return;
}
int segment_hist_max(const MatND& hist, int& low_thresh, int& high_thresh)
{
Mat bw;
//const double max_bell_width = 20; // we expect two bells with width bounded above
//const double min_bell_width = 5; // and below
double total_sum = sum(hist).val[0];
//double thresh = total_sum/(2*max_bell_width)*0.25f; // quarter of a bar inside a bell
// threshold(hist, bw, thresh, 255.0, CV_THRESH_BINARY);
double quantile_sum = 0.0;
//double min_quantile = 0.2;
double low_sum = 0;
double max_segment_length = 0;
int max_start_x = -1;
int max_end_x = -1;
int start_x = 0;
const double out_of_bells_fraction = 0.1;
for(int x = 0; x < hist.size[0]; x++)
{
quantile_sum += hist.at<double>(x);
if(quantile_sum < 0.2*total_sum) continue;
if(quantile_sum - low_sum > out_of_bells_fraction*total_sum)
{
if(max_segment_length < x - start_x)
{
max_segment_length = x - start_x;
max_start_x = start_x;
max_end_x = x;
}
low_sum = quantile_sum;
start_x = x;
}
}
if(start_x == -1)
{
return 0;
}
else
{
low_thresh = cvRound(max_start_x + 0.25*(max_end_x - max_start_x));
high_thresh = cvRound(max_start_x + 0.75*(max_end_x - max_start_x));
return 1;
}
}
bool find4QuadCornerSubpix(const Mat& img, std::vector<Point2f>& corners, Size region_size)
{
const int nbins = 256;
float ranges[] = {0, 256};
const float* _ranges = ranges;
MatND hist;
#if defined(_SUBPIX_VERBOSE)
vector<float> radius;
radius.assign(corners.size(), 0.0f);
#endif //_SUBPIX_VERBOSE
Mat black_comp, white_comp;
for(size_t i = 0; i < corners.size(); i++)
{
int channels = 0;
Rect roi(cvRound(corners[i].x - region_size.width), cvRound(corners[i].y - region_size.height),
region_size.width*2 + 1, region_size.height*2 + 1);
Mat img_roi = img(roi);
calcHist(&img_roi, 1, &channels, Mat(), hist, 1, &nbins, &_ranges);
#if 0
int black_thresh = histQuantile(hist, 0.45f);
int white_thresh = histQuantile(hist, 0.55f);
#else
int black_thresh, white_thresh;
segment_hist_max(hist, black_thresh, white_thresh);
#endif
threshold(img, black_comp, black_thresh, 255.0, CV_THRESH_BINARY_INV);
threshold(img, white_comp, white_thresh, 255.0, CV_THRESH_BINARY);
const int erode_count = 1;
erode(black_comp, black_comp, Mat(), Point(-1, -1), erode_count);
erode(white_comp, white_comp, Mat(), Point(-1, -1), erode_count);
#if defined(_SUBPIX_VERBOSE)
namedWindow("roi", 1);
imshow("roi", img_roi);
imwrite("test.jpg", img);
namedWindow("black", 1);
imshow("black", black_comp);
namedWindow("white", 1);
imshow("white", white_comp);
cvWaitKey(0);
imwrite("black.jpg", black_comp);
imwrite("white.jpg", white_comp);
#endif
vector<vector<Point> > white_contours, black_contours;
vector<Vec4i> white_hierarchy, black_hierarchy;
findContours(black_comp, black_contours, black_hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
findContours(white_comp, white_contours, white_hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
if(black_contours.size() < 5 || white_contours.size() < 5) continue;
// find two white and black blobs that are close to the input point
vector<std::pair<int, float> > white_order, black_order;
orderContours(black_contours, corners[i], black_order);
orderContours(white_contours, corners[i], white_order);
const float max_dist = 10.0f;
if(black_order[0].second > max_dist || black_order[1].second > max_dist ||
white_order[0].second > max_dist || white_order[1].second > max_dist)
{
continue; // there will be no improvement in this corner position
}
const vector<Point>* quads[4] = {&black_contours[black_order[0].first], &black_contours[black_order[1].first],
&white_contours[white_order[0].first], &white_contours[white_order[1].first]};
vector<Point2f> quads_approx[4];
Point2f quad_corners[4];
for(int k = 0; k < 4; k++)
{
#if 1
vector<Point2f> temp;
for(size_t j = 0; j < quads[k]->size(); j++) temp.push_back((*quads[k])[j]);
approxPolyDP(Mat(temp), quads_approx[k], 0.5, true);
findCorner(quads_approx[k], corners[i], quad_corners[k]);
#else
findCorner(*quads[k], corners[i], quad_corners[k]);
#endif
quad_corners[k] += Point2f(0.5f, 0.5f);
}
// cross two lines
Point2f origin1 = quad_corners[0];
Point2f dir1 = quad_corners[1] - quad_corners[0];
Point2f origin2 = quad_corners[2];
Point2f dir2 = quad_corners[3] - quad_corners[2];
double angle = acos(dir1.dot(dir2)/(norm(dir1)*norm(dir2)));
if(cvIsNaN(angle) || cvIsInf(angle) || angle < 0.5 || angle > CV_PI - 0.5) continue;
findLinesCrossPoint(origin1, dir1, origin2, dir2, corners[i]);
#if defined(_SUBPIX_VERBOSE)
radius[i] = norm(corners[i] - ground_truth_corners[ground_truth_idx])*6;
#if 1
Mat test(img.size(), CV_32FC3);
cvtColor(img, test, CV_GRAY2RGB);
// line(test, quad_corners[0] - corners[i] + Point2f(30, 30), quad_corners[1] - corners[i] + Point2f(30, 30), cvScalar(0, 255, 0));
// line(test, quad_corners[2] - corners[i] + Point2f(30, 30), quad_corners[3] - corners[i] + Point2f(30, 30), cvScalar(0, 255, 0));
vector<vector<Point> > contrs;
contrs.resize(1);
for(int k = 0; k < 4; k++)
{
//contrs[0] = quads_approx[k];
contrs[0].clear();
for(size_t j = 0; j < quads_approx[k].size(); j++) contrs[0].push_back(quads_approx[k][j]);
drawContours(test, contrs, 0, CV_RGB(0, 0, 255), 1, 1, vector<Vec4i>(), 2);
circle(test, quad_corners[k], 0.5, CV_RGB(255, 0, 0));
}
Mat test1 = test(Rect(corners[i].x - 30, corners[i].y - 30, 60, 60));
namedWindow("1", 1);
imshow("1", test1);
imwrite("test.jpg", test);
waitKey(0);
#endif
#endif //_SUBPIX_VERBOSE
}
#if defined(_SUBPIX_VERBOSE)
Mat test(img.size(), CV_32FC3);
cvtColor(img, test, CV_GRAY2RGB);
drawCircles(test, corners, radius);
namedWindow("corners", 1);
imshow("corners", test);
waitKey();
#endif //_SUBPIX_VERBOSE
return true;
}
}; // namespace std

View File

@@ -0,0 +1,259 @@
// This is based on Rainer Lienhart contribution. Below is the original copyright:
//
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// University of Augsburg License Agreement
// For Open Source MultiMedia Computing (MMC) Library
//
// Copyright (C) 2007, University of Augsburg, Germany, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of University of Augsburg, Germany may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the University of Augsburg, Germany or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
// Author: Rainer Lienhart
// email: Rainer.Lienhart@informatik.uni-augsburg.de
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
// Please cite the following two papers:
// 1. Shechtman, E., Irani, M.:
// Matching local self-similarities across images and videos.
// CVPR, (2007)
// 2. Eva Horster, Thomas Greif, Rainer Lienhart, Malcolm Slaney.
// Comparing Local Feature Descriptors in pLSA-Based Image Models.
// 30th Annual Symposium of the German Association for
// Pattern Recognition (DAGM) 2008, Munich, Germany, June 2008.
#include "precomp.hpp"
namespace cv
{
SelfSimDescriptor::SelfSimDescriptor()
{
smallSize = DEFAULT_SMALL_SIZE;
largeSize = DEFAULT_LARGE_SIZE;
numberOfAngles = DEFAULT_NUM_ANGLES;
startDistanceBucket = DEFAULT_START_DISTANCE_BUCKET;
numberOfDistanceBuckets = DEFAULT_NUM_DISTANCE_BUCKETS;
}
SelfSimDescriptor::SelfSimDescriptor(int _ssize, int _lsize,
int _startDistanceBucket,
int _numberOfDistanceBuckets, int _numberOfAngles)
{
smallSize = _ssize;
largeSize = _lsize;
startDistanceBucket = _startDistanceBucket;
numberOfDistanceBuckets = _numberOfDistanceBuckets;
numberOfAngles = _numberOfAngles;
}
SelfSimDescriptor::SelfSimDescriptor(const SelfSimDescriptor& ss)
{
smallSize = ss.smallSize;
largeSize = ss.largeSize;
startDistanceBucket = ss.startDistanceBucket;
numberOfDistanceBuckets = ss.numberOfDistanceBuckets;
numberOfAngles = ss.numberOfAngles;
}
SelfSimDescriptor::~SelfSimDescriptor()
{
}
SelfSimDescriptor& SelfSimDescriptor::operator = (const SelfSimDescriptor& ss)
{
if( this != &ss )
{
smallSize = ss.smallSize;
largeSize = ss.largeSize;
startDistanceBucket = ss.startDistanceBucket;
numberOfDistanceBuckets = ss.numberOfDistanceBuckets;
numberOfAngles = ss.numberOfAngles;
}
return *this;
}
size_t SelfSimDescriptor::getDescriptorSize() const
{
return numberOfAngles*(numberOfDistanceBuckets - startDistanceBucket);
}
Size SelfSimDescriptor::getGridSize( Size imgSize, Size winStride ) const
{
winStride.width = std::max(winStride.width, 1);
winStride.height = std::max(winStride.height, 1);
int border = largeSize/2 + smallSize/2;
return Size(std::max(imgSize.width - border*2 + winStride.width - 1, 0)/winStride.width,
std::max(imgSize.height - border*2 + winStride.height - 1, 0)/winStride.height);
}
// TODO: optimized with SSE2
void SelfSimDescriptor::SSD(const Mat& img, Point pt, Mat& ssd) const
{
int x, y, dx, dy, r0 = largeSize/2, r1 = smallSize/2;
int step = img.step;
for( y = -r0; y <= r0; y++ )
{
float* sptr = ssd.ptr<float>(y+r0) + r0;
for( x = -r0; x <= r0; x++ )
{
int sum = 0;
const uchar* src0 = img.ptr<uchar>(y + pt.y - r1) + x + pt.x;
const uchar* src1 = img.ptr<uchar>(pt.y - r1) + pt.x;
for( dy = -r1; dy <= r1; dy++, src0 += step, src1 += step )
for( dx = -r1; dx <= r1; dx++ )
{
int t = src0[dx] - src1[dx];
sum += t*t;
}
sptr[x] = (float)sum;
}
}
}
void SelfSimDescriptor::compute(const Mat& img, vector<float>& descriptors, Size winStride,
const vector<Point>& locations) const
{
CV_Assert( img.depth() == CV_8U );
winStride.width = std::max(winStride.width, 1);
winStride.height = std::max(winStride.height, 1);
Size gridSize = getGridSize(img.size(), winStride);
int i, nwindows = locations.empty() ? gridSize.width*gridSize.height : (int)locations.size();
int border = largeSize/2 + smallSize/2;
int fsize = (int)getDescriptorSize();
vector<float> tempFeature(fsize+1);
descriptors.resize(fsize*nwindows + 1);
Mat ssd(largeSize, largeSize, CV_32F), mappingMask;
computeLogPolarMapping(mappingMask);
#if 0 //def _OPENMP
int nthreads = cvGetNumThreads();
#pragma omp parallel for num_threads(nthreads)
#endif
for( i = 0; i < nwindows; i++ )
{
Point pt;
float* feature0 = &descriptors[fsize*i];
float* feature = &tempFeature[0];
int x, y, j;
if( !locations.empty() )
{
pt = locations[i];
if( pt.x < border || pt.x >= img.cols - border ||
pt.y < border || pt.y >= img.rows - border )
{
for( j = 0; j < fsize; j++ )
feature0[j] = 0.f;
continue;
}
}
else
pt = Point((i % gridSize.width)*winStride.width + border,
(i / gridSize.width)*winStride.height + border);
SSD(img, pt, ssd);
// Determine in the local neighborhood the largest difference and use for normalization
float var_noise = 1000.f;
for( y = -1; y <= 1 ; y++ )
for( x = -1 ; x <= 1 ; x++ )
var_noise = std::max(var_noise, ssd.at<float>(largeSize/2+y, largeSize/2+x));
for( j = 0; j <= fsize; j++ )
feature[j] = FLT_MAX;
// Derive feature vector before exp(-x) computation
// Idea: for all x,a >= 0, a=const. we have:
// max [ exp( -x / a) ] = exp ( -min(x) / a )
// Thus, determine min(ssd) and store in feature[...]
for( y = 0; y < ssd.rows; y++ )
{
const schar *mappingMaskPtr = mappingMask.ptr<schar>(y);
const float *ssdPtr = ssd.ptr<float>(y);
for( x = 0 ; x < ssd.cols; x++ )
{
int index = mappingMaskPtr[x];
feature[index] = std::max(feature[index], ssdPtr[x]);
}
}
var_noise = -1.f/var_noise;
for( j = 0; j < fsize; j++ )
feature0[j] = feature[j]*var_noise;
Mat _f(1, fsize, CV_32F, feature0);
cv::exp(_f, _f);
}
}
void SelfSimDescriptor::computeLogPolarMapping(Mat& mappingMask) const
{
mappingMask.create(largeSize, largeSize, CV_8S);
// What we want is
// log_m (radius) = numberOfDistanceBuckets
// <==> log_10 (radius) / log_10 (m) = numberOfDistanceBuckets
// <==> log_10 (radius) / numberOfDistanceBuckets = log_10 (m)
// <==> m = 10 ^ log_10(m) = 10 ^ [log_10 (radius) / numberOfDistanceBuckets]
//
int radius = largeSize/2, angleBucketSize = 360 / numberOfAngles;
int fsize = (int)getDescriptorSize();
double inv_log10m = (double)numberOfDistanceBuckets/log10((double)radius);
for (int y=-radius ; y<=radius ; y++)
{
schar* mrow = mappingMask.ptr<schar>(y+radius);
for (int x=-radius ; x<=radius ; x++)
{
int index = fsize;
float dist = (float)std::sqrt((float)x*x + (float)y*y);
int distNo = dist > 0 ? cvRound(log10(dist)*inv_log10m) : 0;
if( startDistanceBucket <= distNo && distNo < numberOfDistanceBuckets )
{
float angle = std::atan2( (float)y, (float)x ) / (float)CV_PI * 180.0f;
if (angle < 0) angle += 360.0f;
int angleInt = (cvRound(angle) + angleBucketSize/2) % 360;
int angleIndex = angleInt / angleBucketSize;
index = (distNo-startDistanceBucket)*numberOfAngles + angleIndex;
}
mrow[x + radius] = saturate_cast<schar>(index);
}
}
}
}

File diff suppressed because it is too large Load Diff