"atomic bomb" commit. Reorganized OpenCV directory structure

This commit is contained in:
Vadim Pisarevsky
2010-05-11 17:44:00 +00:00
commit 127d6649a1
1761 changed files with 1766340 additions and 0 deletions

View File

@@ -0,0 +1,697 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CALIB3D_HPP__
#define __OPENCV_CALIB3D_HPP__
#include "opencv2/core/core.hpp"
#ifdef __cplusplus
extern "C" {
#endif
/****************************************************************************************\
* Camera Calibration, Pose Estimation and Stereo *
\****************************************************************************************/
typedef struct CvPOSITObject CvPOSITObject;
/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */
CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count );
/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of
an object given its model and projection in a weak-perspective case */
CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points,
double focal_length, CvTermCriteria criteria,
float* rotation_matrix, float* translation_vector);
/* Releases CvPOSITObject structure */
CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object );
/* updates the number of RANSAC iterations */
CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob,
int model_points, int max_iters );
CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst );
/* Calculates fundamental matrix given a set of corresponding points */
#define CV_FM_7POINT 1
#define CV_FM_8POINT 2
#define CV_FM_LMEDS_ONLY 8
#define CV_FM_RANSAC_ONLY 4
#define CV_FM_LMEDS 8
#define CV_FM_RANSAC 4
CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2,
CvMat* fundamental_matrix,
int method CV_DEFAULT(CV_FM_RANSAC),
double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99),
CvMat* status CV_DEFAULT(NULL) );
/* For each input point on one of images
computes parameters of the corresponding
epipolar line on the other image */
CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points,
int which_image,
const CvMat* fundamental_matrix,
CvMat* correspondent_lines );
/* Triangulation functions */
CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2,
CvMat* projPoints1, CvMat* projPoints2,
CvMat* points4D);
CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2,
CvMat* new_points1, CvMat* new_points2);
/* Transforms the input image to compensate lens distortion */
CVAPI(void) cvUndistort2( const CvArr* src, CvArr* dst,
const CvMat* camera_matrix,
const CvMat* distortion_coeffs,
const CvMat* new_camera_matrix CV_DEFAULT(0) );
/* Computes transformation map from intrinsic camera parameters
that can used by cvRemap */
CVAPI(void) cvInitUndistortMap( const CvMat* camera_matrix,
const CvMat* distortion_coeffs,
CvArr* mapx, CvArr* mapy );
/* Computes undistortion+rectification map for a head of stereo camera */
CVAPI(void) cvInitUndistortRectifyMap( const CvMat* camera_matrix,
const CvMat* dist_coeffs,
const CvMat *R, const CvMat* new_camera_matrix,
CvArr* mapx, CvArr* mapy );
/* Computes the original (undistorted) feature coordinates
from the observed (distorted) coordinates */
CVAPI(void) cvUndistortPoints( const CvMat* src, CvMat* dst,
const CvMat* camera_matrix,
const CvMat* dist_coeffs,
const CvMat* R CV_DEFAULT(0),
const CvMat* P CV_DEFAULT(0));
/* Computes the optimal new camera matrix according to the free scaling parameter alpha:
alpha=0 - only valid pixels will be retained in the undistorted image
alpha=1 - all the source image pixels will be retained in the undistorted image
*/
CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix,
const CvMat* dist_coeffs,
CvSize image_size, double alpha,
CvMat* new_camera_matrix,
CvSize new_imag_size CV_DEFAULT(cvSize(0,0)),
CvRect* valid_pixel_ROI CV_DEFAULT(0) );
/* Converts rotation vector to rotation matrix or vice versa */
CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst,
CvMat* jacobian CV_DEFAULT(0) );
#define CV_LMEDS 4
#define CV_RANSAC 8
/* Finds perspective transformation between the object plane and image (view) plane */
CVAPI(int) cvFindHomography( const CvMat* src_points,
const CvMat* dst_points,
CvMat* homography,
int method CV_DEFAULT(0),
double ransacReprojThreshold CV_DEFAULT(3),
CvMat* mask CV_DEFAULT(0));
/* Computes RQ decomposition for 3x3 matrices */
CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ,
CvMat *matrixQx CV_DEFAULT(NULL),
CvMat *matrixQy CV_DEFAULT(NULL),
CvMat *matrixQz CV_DEFAULT(NULL),
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
/* Computes projection matrix decomposition */
CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
CvMat *rotMatr, CvMat *posVect,
CvMat *rotMatrX CV_DEFAULT(NULL),
CvMat *rotMatrY CV_DEFAULT(NULL),
CvMat *rotMatrZ CV_DEFAULT(NULL),
CvPoint3D64f *eulerAngles CV_DEFAULT(NULL));
/* Computes d(AB)/dA and d(AB)/dB */
CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB );
/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)),
t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */
CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
const CvMat* _rvec2, const CvMat* _tvec2,
CvMat* _rvec3, CvMat* _tvec3,
CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0),
CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0),
CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0),
CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) );
/* Projects object points to the view plane using
the specified extrinsic and intrinsic camera parameters */
CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector,
const CvMat* translation_vector, const CvMat* camera_matrix,
const CvMat* distortion_coeffs, CvMat* image_points,
CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL),
CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL),
CvMat* dpddist CV_DEFAULT(NULL),
double aspect_ratio CV_DEFAULT(0));
/* Finds extrinsic camera parameters from
a few known corresponding point pairs and intrinsic parameters */
CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points,
const CvMat* image_points,
const CvMat* camera_matrix,
const CvMat* distortion_coeffs,
CvMat* rotation_vector,
CvMat* translation_vector,
int use_extrinsic_guess CV_DEFAULT(0) );
/* Computes initial estimate of the intrinsic camera parameters
in case of planar calibration target (e.g. chessboard) */
CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points,
const CvMat* image_points,
const CvMat* npoints, CvSize image_size,
CvMat* camera_matrix,
double aspect_ratio CV_DEFAULT(1.) );
#define CV_CALIB_CB_ADAPTIVE_THRESH 1
#define CV_CALIB_CB_NORMALIZE_IMAGE 2
#define CV_CALIB_CB_FILTER_QUADS 4
#define CV_CALIB_CB_FAST_CHECK 8
// Performs a fast check if a chessboard is in the input image. This is a workaround to
// a problem of cvFindChessboardCorners being slow on images with no chessboard
// - src: input image
// - size: chessboard size
// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called,
// 0 if there is no chessboard, -1 in case of error
CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size);
/* Detects corners on a chessboard calibration pattern */
CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size,
CvPoint2D32f* corners,
int* corner_count CV_DEFAULT(NULL),
int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+
CV_CALIB_CB_NORMALIZE_IMAGE) );
/* Draws individual chessboard corners or the whole chessboard detected */
CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size,
CvPoint2D32f* corners,
int count, int pattern_was_found );
#define CV_CALIB_USE_INTRINSIC_GUESS 1
#define CV_CALIB_FIX_ASPECT_RATIO 2
#define CV_CALIB_FIX_PRINCIPAL_POINT 4
#define CV_CALIB_ZERO_TANGENT_DIST 8
#define CV_CALIB_FIX_FOCAL_LENGTH 16
#define CV_CALIB_FIX_K1 32
#define CV_CALIB_FIX_K2 64
#define CV_CALIB_FIX_K3 128
/* Finds intrinsic and extrinsic camera parameters
from a few views of known calibration pattern */
CVAPI(double) cvCalibrateCamera2( const CvMat* object_points,
const CvMat* image_points,
const CvMat* point_counts,
CvSize image_size,
CvMat* camera_matrix,
CvMat* distortion_coeffs,
CvMat* rotation_vectors CV_DEFAULT(NULL),
CvMat* translation_vectors CV_DEFAULT(NULL),
int flags CV_DEFAULT(0) );
/* Computes various useful characteristics of the camera from the data computed by
cvCalibrateCamera2 */
CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix,
CvSize image_size,
double aperture_width CV_DEFAULT(0),
double aperture_height CV_DEFAULT(0),
double *fovx CV_DEFAULT(NULL),
double *fovy CV_DEFAULT(NULL),
double *focal_length CV_DEFAULT(NULL),
CvPoint2D64f *principal_point CV_DEFAULT(NULL),
double *pixel_aspect_ratio CV_DEFAULT(NULL));
#define CV_CALIB_FIX_INTRINSIC 256
#define CV_CALIB_SAME_FOCAL_LENGTH 512
/* Computes the transformation from one camera coordinate system to another one
from a few correspondent views of the same calibration target. Optionally, calibrates
both cameras */
CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1,
const CvMat* image_points2, const CvMat* npoints,
CvMat* camera_matrix1, CvMat* dist_coeffs1,
CvMat* camera_matrix2, CvMat* dist_coeffs2,
CvSize image_size, CvMat* R, CvMat* T,
CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0),
CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)),
int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC));
#define CV_CALIB_ZERO_DISPARITY 1024
/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both
views parallel (=> to make all the epipolar lines horizontal or vertical) */
CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2,
const CvMat* dist_coeffs1, const CvMat* dist_coeffs2,
CvSize image_size, const CvMat* R, const CvMat* T,
CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2,
CvMat* Q CV_DEFAULT(0),
int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY),
double alpha CV_DEFAULT(-1),
CvSize new_image_size CV_DEFAULT(cvSize(0,0)),
CvRect* valid_pix_ROI1 CV_DEFAULT(0),
CvRect* valid_pix_ROI2 CV_DEFAULT(0));
/* Computes rectification transformations for uncalibrated pair of images using a set
of point correspondences */
CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2,
const CvMat* F, CvSize img_size,
CvMat* H1, CvMat* H2,
double threshold CV_DEFAULT(5));
/* stereo correspondence parameters and functions */
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0
#define CV_STEREO_BM_XSOBEL 1
/* Block matching algorithm structure */
typedef struct CvStereoBMState
{
// pre-filtering (normalization of input images)
int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now
int preFilterSize; // averaging window size: ~5x5..21x21
int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap]
// correspondence using Sum of Absolute Difference (SAD)
int SADWindowSize; // ~5x5..21x21
int minDisparity; // minimum disparity (can be negative)
int numberOfDisparities; // maximum disparity - minimum disparity (> 0)
// post-filtering
int textureThreshold; // the disparity is only computed for pixels
// with textured enough neighborhood
int uniquenessRatio; // accept the computed disparity d* only if
// SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.)
// for any d != d*+/-1 within the search range.
int speckleWindowSize; // disparity variation window
int speckleRange; // acceptable range of variation in window
int trySmallerWindows; // if 1, the results may be more accurate,
// at the expense of slower processing
CvRect roi1, roi2;
int disp12MaxDiff;
// temporary buffers
CvMat* preFilteredImg0;
CvMat* preFilteredImg1;
CvMat* slidingSumBuf;
CvMat* cost;
CvMat* disp;
} CvStereoBMState;
#define CV_STEREO_BM_BASIC 0
#define CV_STEREO_BM_FISH_EYE 1
#define CV_STEREO_BM_NARROW 2
CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC),
int numberOfDisparities CV_DEFAULT(0));
CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state );
CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right,
CvArr* disparity, CvStereoBMState* state );
CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize );
CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost,
int minDisparity, int numberOfDisparities,
int disp12MaxDiff CV_DEFAULT(1) );
/* Kolmogorov-Zabin stereo-correspondence algorithm (a.k.a. KZ1) */
#define CV_STEREO_GC_OCCLUDED SHRT_MAX
typedef struct CvStereoGCState
{
int Ithreshold;
int interactionRadius;
float K, lambda, lambda1, lambda2;
int occlusionCost;
int minDisparity;
int numberOfDisparities;
int maxIters;
CvMat* left;
CvMat* right;
CvMat* dispLeft;
CvMat* dispRight;
CvMat* ptrLeft;
CvMat* ptrRight;
CvMat* vtxBuf;
CvMat* edgeBuf;
} CvStereoGCState;
CVAPI(CvStereoGCState*) cvCreateStereoGCState( int numberOfDisparities, int maxIters );
CVAPI(void) cvReleaseStereoGCState( CvStereoGCState** state );
CVAPI(void) cvFindStereoCorrespondenceGC( const CvArr* left, const CvArr* right,
CvArr* disparityLeft, CvArr* disparityRight,
CvStereoGCState* state,
int useDisparityGuess CV_DEFAULT(0) );
/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */
CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage,
CvArr* _3dImage, const CvMat* Q,
int handleMissingValues CV_DEFAULT(0) );
#ifdef __cplusplus
}
//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
CvLevMarq();
CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
bool completeSymmFlag=false );
~CvLevMarq();
void init( int nparams, int nerrs, CvTermCriteria criteria=
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
bool completeSymmFlag=false );
bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
void clear();
void step();
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
cv::Ptr<CvMat> mask;
cv::Ptr<CvMat> prevParam;
cv::Ptr<CvMat> param;
cv::Ptr<CvMat> J;
cv::Ptr<CvMat> err;
cv::Ptr<CvMat> JtJ;
cv::Ptr<CvMat> JtJN;
cv::Ptr<CvMat> JtErr;
cv::Ptr<CvMat> JtJV;
cv::Ptr<CvMat> JtJW;
double prevErrNorm, errNorm;
int lambdaLg10;
CvTermCriteria criteria;
int state;
int iters;
bool completeSymmFlag;
};
namespace cv
{
CV_EXPORTS void undistortPoints( const Mat& src, vector<Point2f>& dst,
const Mat& cameraMatrix, const Mat& distCoeffs,
const Mat& R=Mat(), const Mat& P=Mat());
CV_EXPORTS void undistortPoints( const Mat& src, Mat& dst,
const Mat& cameraMatrix, const Mat& distCoeffs,
const Mat& R=Mat(), const Mat& P=Mat());
CV_EXPORTS void Rodrigues(const Mat& src, Mat& dst);
CV_EXPORTS void Rodrigues(const Mat& src, Mat& dst, Mat& jacobian);
enum { LMEDS=4, RANSAC=8 };
CV_EXPORTS Mat findHomography( const Mat& srcPoints,
const Mat& dstPoints,
Mat& mask, int method=0,
double ransacReprojThreshold=3 );
CV_EXPORTS Mat findHomography( const Mat& srcPoints,
const Mat& dstPoints,
vector<uchar>& mask, int method=0,
double ransacReprojThreshold=3 );
CV_EXPORTS Mat findHomography( const Mat& srcPoints,
const Mat& dstPoints,
int method=0, double ransacReprojThreshold=3 );
/* Computes RQ decomposition for 3x3 matrices */
CV_EXPORTS void RQDecomp3x3( const Mat& M, Mat& R, Mat& Q );
CV_EXPORTS Vec3d RQDecomp3x3( const Mat& M, Mat& R, Mat& Q,
Mat& Qx, Mat& Qy, Mat& Qz );
CV_EXPORTS void decomposeProjectionMatrix( const Mat& projMatrix, Mat& cameraMatrix,
Mat& rotMatrix, Mat& transVect );
CV_EXPORTS void decomposeProjectionMatrix( const Mat& projMatrix, Mat& cameraMatrix,
Mat& rotMatrix, Mat& transVect,
Mat& rotMatrixX, Mat& rotMatrixY,
Mat& rotMatrixZ, Vec3d& eulerAngles );
CV_EXPORTS void matMulDeriv( const Mat& A, const Mat& B, Mat& dABdA, Mat& dABdB );
CV_EXPORTS void composeRT( const Mat& rvec1, const Mat& tvec1,
const Mat& rvec2, const Mat& tvec2,
Mat& rvec3, Mat& tvec3 );
CV_EXPORTS void composeRT( const Mat& rvec1, const Mat& tvec1,
const Mat& rvec2, const Mat& tvec2,
Mat& rvec3, Mat& tvec3,
Mat& dr3dr1, Mat& dr3dt1,
Mat& dr3dr2, Mat& dr3dt2,
Mat& dt3dr1, Mat& dt3dt1,
Mat& dt3dr2, Mat& dt3dt2 );
CV_EXPORTS void projectPoints( const Mat& objectPoints,
const Mat& rvec, const Mat& tvec,
const Mat& cameraMatrix,
const Mat& distCoeffs,
vector<Point2f>& imagePoints );
CV_EXPORTS void projectPoints( const Mat& objectPoints,
const Mat& rvec, const Mat& tvec,
const Mat& cameraMatrix,
const Mat& distCoeffs,
vector<Point2f>& imagePoints,
Mat& dpdrot, Mat& dpdt, Mat& dpdf,
Mat& dpdc, Mat& dpddist,
double aspectRatio=0 );
CV_EXPORTS void solvePnP( const Mat& objectPoints,
const Mat& imagePoints,
const Mat& cameraMatrix,
const Mat& distCoeffs,
Mat& rvec, Mat& tvec,
bool useExtrinsicGuess=false );
CV_EXPORTS Mat initCameraMatrix2D( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
Size imageSize, double aspectRatio=1. );
enum { CALIB_CB_ADAPTIVE_THRESH = 1, CALIB_CB_NORMALIZE_IMAGE = 2,
CALIB_CB_FILTER_QUADS = 4, CALIB_CB_FAST_CHECK = 8 };
CV_EXPORTS bool findChessboardCorners( const Mat& image, Size patternSize,
vector<Point2f>& corners,
int flags=CALIB_CB_ADAPTIVE_THRESH+
CALIB_CB_NORMALIZE_IMAGE );
CV_EXPORTS void drawChessboardCorners( Mat& image, Size patternSize,
const Mat& corners,
bool patternWasFound );
enum
{
CALIB_USE_INTRINSIC_GUESS = 1,
CALIB_FIX_ASPECT_RATIO = 2,
CALIB_FIX_PRINCIPAL_POINT = 4,
CALIB_ZERO_TANGENT_DIST = 8,
CALIB_FIX_FOCAL_LENGTH = 16,
CALIB_FIX_K1 = 32,
CALIB_FIX_K2 = 64,
CALIB_FIX_K3 = 128,
// only for stereo
CALIB_FIX_INTRINSIC = 256,
CALIB_SAME_FOCAL_LENGTH = 512,
// for stereo rectification
CALIB_ZERO_DISPARITY = 1024
};
CV_EXPORTS double calibrateCamera( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
Size imageSize,
Mat& cameraMatrix, Mat& distCoeffs,
vector<Mat>& rvecs, vector<Mat>& tvecs,
int flags=0 );
CV_EXPORTS void calibrationMatrixValues( const Mat& cameraMatrix,
Size imageSize,
double apertureWidth,
double apertureHeight,
double& fovx,
double& fovy,
double& focalLength,
Point2d& principalPoint,
double& aspectRatio );
CV_EXPORTS double stereoCalibrate( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints1,
const vector<vector<Point2f> >& imagePoints2,
Mat& cameraMatrix1, Mat& distCoeffs1,
Mat& cameraMatrix2, Mat& distCoeffs2,
Size imageSize, Mat& R, Mat& T,
Mat& E, Mat& F,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+
TermCriteria::EPS, 30, 1e-6),
int flags=CALIB_FIX_INTRINSIC );
CV_EXPORTS void stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
const Mat& cameraMatrix2, const Mat& distCoeffs2,
Size imageSize, const Mat& R, const Mat& T,
Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
int flags=CALIB_ZERO_DISPARITY );
CV_EXPORTS void stereoRectify( const Mat& cameraMatrix1, const Mat& distCoeffs1,
const Mat& cameraMatrix2, const Mat& distCoeffs2,
Size imageSize, const Mat& R, const Mat& T,
Mat& R1, Mat& R2, Mat& P1, Mat& P2, Mat& Q,
double alpha, Size newImageSize=Size(),
Rect* validPixROI1=0, Rect* validPixROI2=0,
int flags=CALIB_ZERO_DISPARITY );
CV_EXPORTS bool stereoRectifyUncalibrated( const Mat& points1,
const Mat& points2,
const Mat& F, Size imgSize,
Mat& H1, Mat& H2,
double threshold=5 );
CV_EXPORTS void convertPointsHomogeneous( const Mat& src, vector<Point3f>& dst );
CV_EXPORTS void convertPointsHomogeneous( const Mat& src, vector<Point2f>& dst );
enum
{
FM_7POINT = 1, FM_8POINT = 2, FM_LMEDS = 4, FM_RANSAC = 8
};
CV_EXPORTS Mat findFundamentalMat( const Mat& points1, const Mat& points2,
vector<uchar>& mask, int method=FM_RANSAC,
double param1=3., double param2=0.99 );
CV_EXPORTS Mat findFundamentalMat( const Mat& points1, const Mat& points2,
int method=FM_RANSAC,
double param1=3., double param2=0.99 );
CV_EXPORTS void computeCorrespondEpilines( const Mat& points1,
int whichImage, const Mat& F,
vector<Vec3f>& lines );
template<> CV_EXPORTS void Ptr<CvStereoBMState>::delete_obj();
// Block matching stereo correspondence algorithm
class CV_EXPORTS StereoBM
{
public:
enum { PREFILTER_NORMALIZED_RESPONSE = 0, PREFILTER_XSOBEL = 1,
BASIC_PRESET=0, FISH_EYE_PRESET=1, NARROW_PRESET=2 };
StereoBM();
StereoBM(int preset, int ndisparities=0, int SADWindowSize=21);
void init(int preset, int ndisparities=0, int SADWindowSize=21);
void operator()( const Mat& left, const Mat& right, Mat& disparity, int disptype=CV_16S );
Ptr<CvStereoBMState> state;
};
class CV_EXPORTS StereoSGBM
{
public:
enum { DISP_SHIFT=4, DISP_SCALE = (1<<DISP_SHIFT) };
StereoSGBM();
StereoSGBM(int minDisparity, int numDisparities, int SADWindowSize,
int P1=0, int P2=0, int disp12MaxDiff=0,
int preFilterCap=0, int uniquenessRatio=0,
int speckleWindowSize=0, int speckleRange=0,
bool fullDP=false);
virtual ~StereoSGBM();
virtual void operator()(const Mat& left, const Mat& right, Mat& disp);
int minDisparity;
int numberOfDisparities;
int SADWindowSize;
int preFilterCap;
int uniquenessRatio;
int P1, P2;
int speckleWindowSize;
int speckleRange;
int disp12MaxDiff;
bool fullDP;
protected:
Mat buffer;
};
CV_EXPORTS void filterSpeckles( Mat& img, double newVal, int maxSpeckleSize, double maxDiff, Mat& buf );
CV_EXPORTS Rect getValidDisparityROI( Rect roi1, Rect roi2,
int minDisparity, int numberOfDisparities,
int SADWindowSize );
CV_EXPORTS void validateDisparity( Mat& disparity, const Mat& cost,
int minDisparity, int numberOfDisparities,
int disp12MaxDisp=1 );
CV_EXPORTS void reprojectImageTo3D( const Mat& disparity,
Mat& _3dImage, const Mat& Q,
bool handleMissingValues=false );
}
#endif
#include "opencv2/calib3d/compat_c.h"
#endif

View File

@@ -0,0 +1,321 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CALIB3D_COMPAT_C_H__
#define __OPENCV_CALIB3D_COMPAT_C_H__
#include "opencv2/imgproc/imgproc_c.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Find fundamental matrix */
CV_INLINE void cvFindFundamentalMatrix( int* points1, int* points2,
int numpoints, int CV_UNREFERENCED(method), float* matrix )
{
CvMat* pointsMat1;
CvMat* pointsMat2;
CvMat fundMatr = cvMat(3,3,CV_32F,matrix);
int i, curr = 0;
pointsMat1 = cvCreateMat(3,numpoints,CV_64F);
pointsMat2 = cvCreateMat(3,numpoints,CV_64F);
for( i = 0; i < numpoints; i++ )
{
cvmSet(pointsMat1,0,i,points1[curr]);//x
cvmSet(pointsMat1,1,i,points1[curr+1]);//y
cvmSet(pointsMat1,2,i,1.0);
cvmSet(pointsMat2,0,i,points2[curr]);//x
cvmSet(pointsMat2,1,i,points2[curr+1]);//y
cvmSet(pointsMat2,2,i,1.0);
curr += 2;
}
cvFindFundamentalMat(pointsMat1,pointsMat2,&fundMatr,CV_FM_RANSAC,1,0.99,0);
cvReleaseMat(&pointsMat1);
cvReleaseMat(&pointsMat2);
}
CV_INLINE int
cvFindChessBoardCornerGuesses( const void* arr, void* CV_UNREFERENCED(thresharr),
CvMemStorage * CV_UNREFERENCED(storage),
CvSize pattern_size, CvPoint2D32f * corners,
int *corner_count )
{
return cvFindChessboardCorners( arr, pattern_size, corners,
corner_count, CV_CALIB_CB_ADAPTIVE_THRESH );
}
/* Calibrates camera using multiple views of calibration pattern */
CV_INLINE void cvCalibrateCamera( int image_count, int* _point_counts,
CvSize image_size, CvPoint2D32f* _image_points, CvPoint3D32f* _object_points,
float* _distortion_coeffs, float* _camera_matrix, float* _translation_vectors,
float* _rotation_matrices, int flags )
{
int i, total = 0;
CvMat point_counts = cvMat( image_count, 1, CV_32SC1, _point_counts );
CvMat image_points, object_points;
CvMat dist_coeffs = cvMat( 4, 1, CV_32FC1, _distortion_coeffs );
CvMat camera_matrix = cvMat( 3, 3, CV_32FC1, _camera_matrix );
CvMat rotation_matrices = cvMat( image_count, 9, CV_32FC1, _rotation_matrices );
CvMat translation_vectors = cvMat( image_count, 3, CV_32FC1, _translation_vectors );
for( i = 0; i < image_count; i++ )
total += _point_counts[i];
image_points = cvMat( total, 1, CV_32FC2, _image_points );
object_points = cvMat( total, 1, CV_32FC3, _object_points );
cvCalibrateCamera2( &object_points, &image_points, &point_counts, image_size,
&camera_matrix, &dist_coeffs, &rotation_matrices, &translation_vectors,
flags );
}
CV_INLINE void cvCalibrateCamera_64d( int image_count, int* _point_counts,
CvSize image_size, CvPoint2D64f* _image_points, CvPoint3D64f* _object_points,
double* _distortion_coeffs, double* _camera_matrix, double* _translation_vectors,
double* _rotation_matrices, int flags )
{
int i, total = 0;
CvMat point_counts = cvMat( image_count, 1, CV_32SC1, _point_counts );
CvMat image_points, object_points;
CvMat dist_coeffs = cvMat( 4, 1, CV_64FC1, _distortion_coeffs );
CvMat camera_matrix = cvMat( 3, 3, CV_64FC1, _camera_matrix );
CvMat rotation_matrices = cvMat( image_count, 9, CV_64FC1, _rotation_matrices );
CvMat translation_vectors = cvMat( image_count, 3, CV_64FC1, _translation_vectors );
for( i = 0; i < image_count; i++ )
total += _point_counts[i];
image_points = cvMat( total, 1, CV_64FC2, _image_points );
object_points = cvMat( total, 1, CV_64FC3, _object_points );
cvCalibrateCamera2( &object_points, &image_points, &point_counts, image_size,
&camera_matrix, &dist_coeffs, &rotation_matrices, &translation_vectors,
flags );
}
/* Find 3d position of object given intrinsic camera parameters,
3d model of the object and projection of the object into view plane */
CV_INLINE void cvFindExtrinsicCameraParams( int point_count,
CvSize CV_UNREFERENCED(image_size), CvPoint2D32f* _image_points,
CvPoint3D32f* _object_points, float* focal_length,
CvPoint2D32f principal_point, float* _distortion_coeffs,
float* _rotation_vector, float* _translation_vector )
{
CvMat image_points = cvMat( point_count, 1, CV_32FC2, _image_points );
CvMat object_points = cvMat( point_count, 1, CV_32FC3, _object_points );
CvMat dist_coeffs = cvMat( 4, 1, CV_32FC1, _distortion_coeffs );
float a[9];
CvMat camera_matrix = cvMat( 3, 3, CV_32FC1, a );
CvMat rotation_vector = cvMat( 1, 1, CV_32FC3, _rotation_vector );
CvMat translation_vector = cvMat( 1, 1, CV_32FC3, _translation_vector );
a[0] = focal_length[0]; a[4] = focal_length[1];
a[2] = principal_point.x; a[5] = principal_point.y;
a[1] = a[3] = a[6] = a[7] = 0.f;
a[8] = 1.f;
cvFindExtrinsicCameraParams2( &object_points, &image_points, &camera_matrix,
&dist_coeffs, &rotation_vector, &translation_vector, 0 );
}
/* Variant of the previous function that takes double-precision parameters */
CV_INLINE void cvFindExtrinsicCameraParams_64d( int point_count,
CvSize CV_UNREFERENCED(image_size), CvPoint2D64f* _image_points,
CvPoint3D64f* _object_points, double* focal_length,
CvPoint2D64f principal_point, double* _distortion_coeffs,
double* _rotation_vector, double* _translation_vector )
{
CvMat image_points = cvMat( point_count, 1, CV_64FC2, _image_points );
CvMat object_points = cvMat( point_count, 1, CV_64FC3, _object_points );
CvMat dist_coeffs = cvMat( 4, 1, CV_64FC1, _distortion_coeffs );
double a[9];
CvMat camera_matrix = cvMat( 3, 3, CV_64FC1, a );
CvMat rotation_vector = cvMat( 1, 1, CV_64FC3, _rotation_vector );
CvMat translation_vector = cvMat( 1, 1, CV_64FC3, _translation_vector );
a[0] = focal_length[0]; a[4] = focal_length[1];
a[2] = principal_point.x; a[5] = principal_point.y;
a[1] = a[3] = a[6] = a[7] = 0.;
a[8] = 1.;
cvFindExtrinsicCameraParams2( &object_points, &image_points, &camera_matrix,
&dist_coeffs, &rotation_vector, &translation_vector, 0 );
}
/* Rodrigues transform */
#define CV_RODRIGUES_M2V 0
#define CV_RODRIGUES_V2M 1
/* Converts rotation_matrix matrix to rotation_matrix vector or vice versa */
CV_INLINE void cvRodrigues( CvMat* rotation_matrix, CvMat* rotation_vector,
CvMat* jacobian, int conv_type )
{
if( conv_type == CV_RODRIGUES_V2M )
cvRodrigues2( rotation_vector, rotation_matrix, jacobian );
else
cvRodrigues2( rotation_matrix, rotation_vector, jacobian );
}
/* Does reprojection of 3d object points to the view plane */
CV_INLINE void cvProjectPoints( int point_count, CvPoint3D64f* _object_points,
double* _rotation_vector, double* _translation_vector,
double* focal_length, CvPoint2D64f principal_point,
double* _distortion, CvPoint2D64f* _image_points,
double* _deriv_points_rotation_matrix,
double* _deriv_points_translation_vect,
double* _deriv_points_focal,
double* _deriv_points_principal_point,
double* _deriv_points_distortion_coeffs )
{
CvMat object_points = cvMat( point_count, 1, CV_64FC3, _object_points );
CvMat image_points = cvMat( point_count, 1, CV_64FC2, _image_points );
CvMat rotation_vector = cvMat( 3, 1, CV_64FC1, _rotation_vector );
CvMat translation_vector = cvMat( 3, 1, CV_64FC1, _translation_vector );
double a[9];
CvMat camera_matrix = cvMat( 3, 3, CV_64FC1, a );
CvMat dist_coeffs = cvMat( 4, 1, CV_64FC1, _distortion );
CvMat dpdr = cvMat( 2*point_count, 3, CV_64FC1, _deriv_points_rotation_matrix );
CvMat dpdt = cvMat( 2*point_count, 3, CV_64FC1, _deriv_points_translation_vect );
CvMat dpdf = cvMat( 2*point_count, 2, CV_64FC1, _deriv_points_focal );
CvMat dpdc = cvMat( 2*point_count, 2, CV_64FC1, _deriv_points_principal_point );
CvMat dpdk = cvMat( 2*point_count, 4, CV_64FC1, _deriv_points_distortion_coeffs );
a[0] = focal_length[0]; a[4] = focal_length[1];
a[2] = principal_point.x; a[5] = principal_point.y;
a[1] = a[3] = a[6] = a[7] = 0.;
a[8] = 1.;
cvProjectPoints2( &object_points, &rotation_vector, &translation_vector,
&camera_matrix, &dist_coeffs, &image_points,
&dpdr, &dpdt, &dpdf, &dpdc, &dpdk, 0 );
}
/* Simpler version of the previous function */
CV_INLINE void cvProjectPointsSimple( int point_count, CvPoint3D64f* _object_points,
double* _rotation_matrix, double* _translation_vector,
double* _camera_matrix, double* _distortion, CvPoint2D64f* _image_points )
{
CvMat object_points = cvMat( point_count, 1, CV_64FC3, _object_points );
CvMat image_points = cvMat( point_count, 1, CV_64FC2, _image_points );
CvMat rotation_matrix = cvMat( 3, 3, CV_64FC1, _rotation_matrix );
CvMat translation_vector = cvMat( 3, 1, CV_64FC1, _translation_vector );
CvMat camera_matrix = cvMat( 3, 3, CV_64FC1, _camera_matrix );
CvMat dist_coeffs = cvMat( 4, 1, CV_64FC1, _distortion );
cvProjectPoints2( &object_points, &rotation_matrix, &translation_vector,
&camera_matrix, &dist_coeffs, &image_points,
0, 0, 0, 0, 0, 0 );
}
CV_INLINE void cvUnDistortOnce( const CvArr* src, CvArr* dst,
const float* intrinsic_matrix,
const float* distortion_coeffs,
int CV_UNREFERENCED(interpolate) )
{
CvMat _a = cvMat( 3, 3, CV_32F, (void*)intrinsic_matrix );
CvMat _k = cvMat( 4, 1, CV_32F, (void*)distortion_coeffs );
cvUndistort2( src, dst, &_a, &_k, 0 );
}
/* the two functions below have quite hackerish implementations, use with care
(or, which is better, switch to cvUndistortInitMap and cvRemap instead */
CV_INLINE void cvUnDistortInit( const CvArr* CV_UNREFERENCED(src),
CvArr* undistortion_map,
const float* A, const float* k,
int CV_UNREFERENCED(interpolate) )
{
union { uchar* ptr; float* fl; } data;
CvSize sz;
cvGetRawData( undistortion_map, &data.ptr, 0, &sz );
assert( sz.width >= 8 );
/* just save the intrinsic parameters to the map */
data.fl[0] = A[0]; data.fl[1] = A[4];
data.fl[2] = A[2]; data.fl[3] = A[5];
data.fl[4] = k[0]; data.fl[5] = k[1];
data.fl[6] = k[2]; data.fl[7] = k[3];
}
CV_INLINE void cvUnDistort( const CvArr* src, CvArr* dst,
const CvArr* undistortion_map,
int CV_UNREFERENCED(interpolate) )
{
union { uchar* ptr; float* fl; } data;
float a[] = {0,0,0,0,0,0,0,0,1};
CvSize sz;
cvGetRawData( undistortion_map, &data.ptr, 0, &sz );
assert( sz.width >= 8 );
a[0] = data.fl[0]; a[4] = data.fl[1];
a[2] = data.fl[2]; a[5] = data.fl[3];
cvUnDistortOnce( src, dst, a, data.fl + 4, 1 );
}
#define cvMake2DPoints cvConvertPointsHomogeneous
#define cvMake3DPoints cvConvertPointsHomogeneous
#define cvWarpPerspectiveQMatrix cvGetPerspectiveTransform
#define cvConvertPointsHomogenious cvConvertPointsHomogeneous
#ifdef __cplusplus
}
#endif
#endif