"atomic bomb" commit. Reorganized OpenCV directory structure
This commit is contained in:
113
doc/plastex/python-introduction.rst
Normal file
113
doc/plastex/python-introduction.rst
Normal file
@@ -0,0 +1,113 @@
|
||||
Introduction
|
||||
============
|
||||
|
||||
Cookbook
|
||||
--------
|
||||
|
||||
Here is a small collection of code fragments demonstrating some features
|
||||
of the OpenCV Python bindings.
|
||||
|
||||
Convert an image from png to jpg
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
::
|
||||
|
||||
import cv
|
||||
cv.SaveImage("foo.png", cv.LoadImage("foo.jpg"))
|
||||
|
||||
Compute the Laplacian
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
::
|
||||
|
||||
im = cv.LoadImage("foo.png", 1)
|
||||
dst = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 3);
|
||||
laplace = cv.Laplace(im, dst)
|
||||
cv.SaveImage("foo-laplace.png", dst)
|
||||
|
||||
|
||||
Using cvGoodFeaturesToTrack
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
::
|
||||
|
||||
img = cv.LoadImage("foo.jpg")
|
||||
eig_image = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32F, 1)
|
||||
temp_image = cv.CreateImage(cv.GetSize(img), cv.IPL_DEPTH_32F, 1)
|
||||
# Find up to 300 corners using Harris
|
||||
for (x,y) in cv.GoodFeaturesToTrack(img, eig_image, temp_image, 300, None, 1.0, use_harris = True):
|
||||
print "good feature at", x,y
|
||||
|
||||
Using GetSubRect
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
GetSubRect returns a rectangular part of another image. It does this without copying any data.
|
||||
|
||||
::
|
||||
|
||||
img = cv.LoadImage("foo.jpg")
|
||||
sub = cv.GetSubRect(img, (0, 0, 32, 32)) # sub is 32x32 patch from img top-left
|
||||
cv.SetZero(sub) # clear sub to zero, which also clears 32x32 pixels in img
|
||||
|
||||
Using CreateMat, and accessing an element
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
::
|
||||
|
||||
mat = cv.CreateMat(5, 5, cv.CV_32FC1)
|
||||
mat[3,2] += 0.787
|
||||
|
||||
|
||||
ROS image message to OpenCV
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
See this tutorial: http://www.ros.org/wiki/cv_bridge/Tutorials/UsingCvBridgeToConvertBetweenROSImagesAndOpenCVImages
|
||||
|
||||
PIL Image to OpenCV
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
(For details on PIL see the `PIL manual <http://www.pythonware.com/library/pil/handbook/image.htm>`_).
|
||||
|
||||
::
|
||||
|
||||
import Image
|
||||
import cv
|
||||
pi = Image.open('foo.png') # PIL image
|
||||
cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 1)
|
||||
cv.SetData(cv_im, pi.tostring())
|
||||
|
||||
OpenCV to PIL Image
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
::
|
||||
|
||||
cv_im = cv.CreateImage((320,200), cv.IPL_DEPTH_8U, 1)
|
||||
pi = Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())
|
||||
|
||||
NumPy and OpenCV
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
Using the `array interface <http://docs.scipy.org/doc/numpy/reference/arrays.interface.html>`_, to use an OpenCV CvMat in NumPy::
|
||||
|
||||
import cv
|
||||
import numpy
|
||||
mat = cv.CreateMat(5, 5, cv.CV_32FC1)
|
||||
a = numpy.asarray(mat)
|
||||
|
||||
and to use a NumPy array in OpenCV::
|
||||
|
||||
a = numpy.ones((640, 480))
|
||||
mat = cv.fromarray(a)
|
||||
|
||||
even easier, most OpenCV functions can work on NumPy arrays directly, for example::
|
||||
|
||||
picture = numpy.ones((640, 480))
|
||||
cv.Smooth(picture, picture, cv.CV_GAUSSIAN, 15, 15)
|
||||
|
||||
Given a 2D array,
|
||||
the fromarray function (or the implicit version shown above)
|
||||
returns a single-channel CvMat of the same size.
|
||||
For a 3D array of size :math:`j \times k \times l`, it returns a
|
||||
CvMat sized :math:`j \times k` with :math:`l` channels.
|
||||
|
||||
Alternatively, use fromarray with the allowND option to always return a cvMatND.
|
Reference in New Issue
Block a user