"atomic bomb" commit. Reorganized OpenCV directory structure
This commit is contained in:
238
3rdparty/lapack/sgelqf.c
vendored
Normal file
238
3rdparty/lapack/sgelqf.c
vendored
Normal file
@@ -0,0 +1,238 @@
|
||||
#include "clapack.h"
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static integer c__1 = 1;
|
||||
static integer c_n1 = -1;
|
||||
static integer c__3 = 3;
|
||||
static integer c__2 = 2;
|
||||
|
||||
/* Subroutine */ int sgelqf_(integer *m, integer *n, real *a, integer *lda,
|
||||
real *tau, real *work, integer *lwork, integer *info)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
|
||||
extern /* Subroutine */ int sgelq2_(integer *, integer *, real *, integer
|
||||
*, real *, real *, integer *), slarfb_(char *, char *, char *,
|
||||
char *, integer *, integer *, integer *, real *, integer *, real *
|
||||
, integer *, real *, integer *, real *, integer *), xerbla_(char *, integer *);
|
||||
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
||||
integer *, integer *);
|
||||
extern /* Subroutine */ int slarft_(char *, char *, integer *, integer *,
|
||||
real *, integer *, real *, real *, integer *);
|
||||
integer ldwork, lwkopt;
|
||||
logical lquery;
|
||||
|
||||
|
||||
/* -- LAPACK routine (version 3.1) -- */
|
||||
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||||
/* November 2006 */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* SGELQF computes an LQ factorization of a real M-by-N matrix A: */
|
||||
/* A = L * Q. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* M (input) INTEGER */
|
||||
/* The number of rows of the matrix A. M >= 0. */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* The number of columns of the matrix A. N >= 0. */
|
||||
|
||||
/* A (input/output) REAL array, dimension (LDA,N) */
|
||||
/* On entry, the M-by-N matrix A. */
|
||||
/* On exit, the elements on and below the diagonal of the array */
|
||||
/* contain the m-by-min(m,n) lower trapezoidal matrix L (L is */
|
||||
/* lower triangular if m <= n); the elements above the diagonal, */
|
||||
/* with the array TAU, represent the orthogonal matrix Q as a */
|
||||
/* product of elementary reflectors (see Further Details). */
|
||||
|
||||
/* LDA (input) INTEGER */
|
||||
/* The leading dimension of the array A. LDA >= max(1,M). */
|
||||
|
||||
/* TAU (output) REAL array, dimension (min(M,N)) */
|
||||
/* The scalar factors of the elementary reflectors (see Further */
|
||||
/* Details). */
|
||||
|
||||
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
|
||||
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
||||
|
||||
/* LWORK (input) INTEGER */
|
||||
/* The dimension of the array WORK. LWORK >= max(1,M). */
|
||||
/* For optimum performance LWORK >= M*NB, where NB is the */
|
||||
/* optimal blocksize. */
|
||||
|
||||
/* If LWORK = -1, then a workspace query is assumed; the routine */
|
||||
/* only calculates the optimal size of the WORK array, returns */
|
||||
/* this value as the first entry of the WORK array, and no error */
|
||||
/* message related to LWORK is issued by XERBLA. */
|
||||
|
||||
/* INFO (output) INTEGER */
|
||||
/* = 0: successful exit */
|
||||
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* The matrix Q is represented as a product of elementary reflectors */
|
||||
|
||||
/* Q = H(k) . . . H(2) H(1), where k = min(m,n). */
|
||||
|
||||
/* Each H(i) has the form */
|
||||
|
||||
/* H(i) = I - tau * v * v' */
|
||||
|
||||
/* where tau is a real scalar, and v is a real vector with */
|
||||
/* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */
|
||||
/* and tau in TAU(i). */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Test the input arguments */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--tau;
|
||||
--work;
|
||||
|
||||
/* Function Body */
|
||||
*info = 0;
|
||||
nb = ilaenv_(&c__1, "SGELQF", " ", m, n, &c_n1, &c_n1);
|
||||
lwkopt = *m * nb;
|
||||
work[1] = (real) lwkopt;
|
||||
lquery = *lwork == -1;
|
||||
if (*m < 0) {
|
||||
*info = -1;
|
||||
} else if (*n < 0) {
|
||||
*info = -2;
|
||||
} else if (*lda < max(1,*m)) {
|
||||
*info = -4;
|
||||
} else if (*lwork < max(1,*m) && ! lquery) {
|
||||
*info = -7;
|
||||
}
|
||||
if (*info != 0) {
|
||||
i__1 = -(*info);
|
||||
xerbla_("SGELQF", &i__1);
|
||||
return 0;
|
||||
} else if (lquery) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible */
|
||||
|
||||
k = min(*m,*n);
|
||||
if (k == 0) {
|
||||
work[1] = 1.f;
|
||||
return 0;
|
||||
}
|
||||
|
||||
nbmin = 2;
|
||||
nx = 0;
|
||||
iws = *m;
|
||||
if (nb > 1 && nb < k) {
|
||||
|
||||
/* Determine when to cross over from blocked to unblocked code. */
|
||||
|
||||
/* Computing MAX */
|
||||
i__1 = 0, i__2 = ilaenv_(&c__3, "SGELQF", " ", m, n, &c_n1, &c_n1);
|
||||
nx = max(i__1,i__2);
|
||||
if (nx < k) {
|
||||
|
||||
/* Determine if workspace is large enough for blocked code. */
|
||||
|
||||
ldwork = *m;
|
||||
iws = ldwork * nb;
|
||||
if (*lwork < iws) {
|
||||
|
||||
/* Not enough workspace to use optimal NB: reduce NB and */
|
||||
/* determine the minimum value of NB. */
|
||||
|
||||
nb = *lwork / ldwork;
|
||||
/* Computing MAX */
|
||||
i__1 = 2, i__2 = ilaenv_(&c__2, "SGELQF", " ", m, n, &c_n1, &
|
||||
c_n1);
|
||||
nbmin = max(i__1,i__2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (nb >= nbmin && nb < k && nx < k) {
|
||||
|
||||
/* Use blocked code initially */
|
||||
|
||||
i__1 = k - nx;
|
||||
i__2 = nb;
|
||||
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
||||
/* Computing MIN */
|
||||
i__3 = k - i__ + 1;
|
||||
ib = min(i__3,nb);
|
||||
|
||||
/* Compute the LQ factorization of the current block */
|
||||
/* A(i:i+ib-1,i:n) */
|
||||
|
||||
i__3 = *n - i__ + 1;
|
||||
sgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
|
||||
1], &iinfo);
|
||||
if (i__ + ib <= *m) {
|
||||
|
||||
/* Form the triangular factor of the block reflector */
|
||||
/* H = H(i) H(i+1) . . . H(i+ib-1) */
|
||||
|
||||
i__3 = *n - i__ + 1;
|
||||
slarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ *
|
||||
a_dim1], lda, &tau[i__], &work[1], &ldwork);
|
||||
|
||||
/* Apply H to A(i+ib:m,i:n) from the right */
|
||||
|
||||
i__3 = *m - i__ - ib + 1;
|
||||
i__4 = *n - i__ + 1;
|
||||
slarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3,
|
||||
&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
|
||||
ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib +
|
||||
1], &ldwork);
|
||||
}
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__ = 1;
|
||||
}
|
||||
|
||||
/* Use unblocked code to factor the last or only block. */
|
||||
|
||||
if (i__ <= k) {
|
||||
i__2 = *m - i__ + 1;
|
||||
i__1 = *n - i__ + 1;
|
||||
sgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
|
||||
, &iinfo);
|
||||
}
|
||||
|
||||
work[1] = (real) iws;
|
||||
return 0;
|
||||
|
||||
/* End of SGELQF */
|
||||
|
||||
} /* sgelqf_ */
|
||||
Reference in New Issue
Block a user